An Balanced, and Scalable Graph-Based Multiview Clustering Method

被引:1
|
作者
Zhao, Zihua [1 ,2 ]
Nie, Feiping [1 ,2 ]
Wang, Rong [1 ,2 ]
Wang, Zheng [1 ,2 ]
Li, Xuelong [3 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Intelligent Interact & Applicat, Minist Ind & Informat Technol, Xian 710072, Peoples R China
[3] China Telecom Corp Ltd, Inst Artificial Intelligence TeleAI, Beijing 100033, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering methods; Bipartite graph; Vectors; Task analysis; Optimization methods; Laplace equations; Computational modeling; Balanced clustering; bipartite graph; multiview clustering; unsupervised learning;
D O I
10.1109/TKDE.2024.3443534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, graph-based multiview clustering methods have become a research hotspot in the clustering field. However, most existing methods lack consideration of cluster balance in their results. In fact, cluster balance is crucial in many real-world scenarios. Additionally, graph-based multiview clustering methods often suffer from high time consumption and cannot handle large-scale datasets. To address these issues, this paper proposes a novel graph-based multiview clustering method. The method is built upon the bipartite graph. Specifically, it employs a label propagation mechanism to update the smaller anchor label matrix rather than the sample label matrix, significantly reducing the computational cost. The introduced balance constraint in the proposed model contributes to achieving balanced clustering results. The entire clustering model combines information from multiple views through graph fusion. The joint graph and view weight parameters in the model are obtained through task-driven self-supervised learning. Moreover, the model can directly obtain clustering results without the need for the two-stage processing typically used in general spectral clustering. Finally, extensive experiments on toy datasets and real-world datasets are conducted to validate the superiority of the proposed method in terms of clustering performance, clustering balance, and time expenditure.
引用
收藏
页码:7643 / 7656
页数:14
相关论文
共 50 条
  • [41] GTI: A Scalable Graph-based Trajectory Imputation
    Isufaj, Keivin
    Elshrif, Mohamed M.
    Abbar, Sofiane
    Mokbel, Mohamed F.
    31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023, 2023, : 390 - 399
  • [42] Robust and Scalable Graph-Based Semisupervised Learning
    Liu, Wei
    Wang, Jun
    Chang, Shih-Fu
    PROCEEDINGS OF THE IEEE, 2012, 100 (09) : 2624 - 2638
  • [43] Multiview Consensus Graph Clustering
    Zhan, Kun
    Nie, Feiping
    Wang, Jing
    Yang, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (03) : 1261 - 1270
  • [44] GRAPH-BASED REPRESENTATION FOR MULTIVIEW IMAGES WITH COMPLEX CAMERA CONFIGURATIONS
    Su, Xin
    Maugey, Thomas
    Guillemot, Christine
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1554 - 1558
  • [45] A self-adaptive graph-based clustering method with noise identification
    Lin Li
    Xiang Chen
    Chengyun Song
    Pattern Analysis and Applications, 2023, 26 (3) : 907 - 916
  • [46] A self-adaptive graph-based clustering method with noise identification
    Li, Lin
    Chen, Xiang
    Song, Chengyun
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 907 - 916
  • [47] ROBUST RANK CONSTRAINED SPARSE LEARNING: A GRAPH-BASED METHOD FOR CLUSTERING
    Liu, Ran
    Chen, Mulin
    Wang, Qi
    Li, Xuelong
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4217 - 4221
  • [48] Scalable, balanced model-based clustering
    Zhong, S
    Ghosh, J
    PROCEEDINGS OF THE THIRD SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2003, : 71 - 82
  • [49] kNN-MST-Agglomerative: A Fast and Scalable Graph-based Data Clustering Approach on GPU
    Arefin, Ahmed Shamsul
    Riveros, Carlos
    Berretta, Regina
    Moscato, Pablo
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 585 - 590
  • [50] Variational Graph Generator for Multiview Graph Clustering
    Chen, Jianpeng
    Ling, Yawen
    Xu, Jie
    Ren, Yazhou
    Huang, Shudong
    Pu, Xiaorong
    Hao, Zhifeng
    Yu, Philip S.
    He, Lifang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025,