ShieldTSE: A Privacy-Enhanced Split Federated Learning Framework for Traffic State Estimation in IoV

被引:3
|
作者
Chen, Tong [1 ]
Bai, Xiaoshan [2 ]
Zhao, Jiejie [3 ]
Wang, Haiquan [2 ]
Du, Bowen [4 ,5 ]
Li, Lei [3 ]
Zhang, Shan [6 ]
机构
[1] Beihang Univ, State Key Lab Complex & Crit Software Environm, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Software, Beijing 100191, Peoples R China
[3] Zhongguancun Lab, Beijing 100191, Peoples R China
[4] Beihang Univ, State Key Lab Complex & Crit Software Environm, Zhongguancun Lab, Beijing 100191, Peoples R China
[5] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[6] Beihang Univ, Sch Comp Sci & Engn, Zhongguancun Lab, Beijing 100191, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 22期
基金
中国国家自然科学基金;
关键词
Servers; Data models; Privacy; Data privacy; Federated learning; Distributed databases; State estimation; graph neural networks (GNNs); split federated learning (SFL); traffic state estimation (TSE);
D O I
10.1109/JIOT.2024.3442922
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic state estimation (TSE) is attracting significant attention due to its importance to the Internet of Vehicles (IoV) for various applications, such as vehicle path planning. In classic IoV, the real-time traffic data collected by road side units requires transferring to the cloud server for processing. Such a centralized manner may raise privacy leakage issues. Split federated learning (SFL) has emerged as one of the prevalent methods to solve these issues. However, recent studies have shown that the existing SFL frameworks are vulnerable to the model inversion (MI) attacks, leading to private raw data leakage. To this end, in this article, we propose ShieldTSE, a privacy-enhanced SFL framework for TSE in IoV. To protect privacy and maintain utility, a variational encoder-decoder-based privacy-preserving feature extraction module with adversarial learning is first proposed to generate better privacy-preserved intermediate activations with a lower-dimensional feature space. Then, a hard attention-based feature selection module is designed to select partial yet crucial features from the intermediate activations by removing redundant sensitive features to further reduce the data privacy leakage. Experimental results demonstrate that ShieldTSE achieves superior privacy-preserving ability when against training-based and optimization-based MI attacks with an average reconstruction mean-square error (MSE) improvement of 18x and 35x on METR-LA and PEMS-BAY compared to the baseline without the privacy-preserving strategy, respectively. ShieldTSE also successfully maintains better model utility compared to the privacy protection baselines.
引用
收藏
页码:37324 / 37339
页数:16
相关论文
共 50 条
  • [21] Asynchronous Federated Learning With Local Differential Privacy for Privacy-Enhanced Recommender Systems
    Zhao, Xiaopeng
    Bai, Xiao
    Sun, Guohao
    Yan, Zhe
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (07): : 7915 - 7929
  • [22] IHVFL: a privacy-enhanced intention-hiding vertical federated learning framework for medical data
    Fei Tang
    Shikai Liang
    Guowei Ling
    Jinyong Shan
    Cybersecurity, 6
  • [23] A privacy-enhanced framework with deep learning for botnet detection
    Wu, Guangli
    Wang, Xingyue
    CYBERSECURITY, 2025, 8 (01):
  • [24] PEFL: A Privacy-Enhanced Federated Learning Scheme for Big Data Analytics
    Zhang, Jiale
    Chen, Bing
    Yu, Shui
    Deng, Hai
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [25] FIND: Privacy-Enhanced Federated Learning for Intelligent Fake News Detection
    Lian, Zhuotao
    Zhang, Chen
    Su, Chunhua
    Dharejo, Fayaz Ali
    Almutiq, Mutiq
    Memon, Muhammad Hammad
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (04) : 5005 - 5014
  • [26] Security and Privacy-Enhanced Federated Learning for Anomaly Detection in IoT Infrastructures
    Cui, Lei
    Qu, Youyang
    Xie, Gang
    Zeng, Deze
    Li, Ruidong
    Shen, Shigen
    Yu, Shui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (05) : 3492 - 3500
  • [27] Privacy-Enhanced Data Fusion for Federated Learning Empowered Internet of Things
    Lin, Qingxin
    Xu, Kuai
    Huang, Yikun
    Yu, Feng
    Wang, Xiaoding
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [28] RR-LADP: A Privacy-Enhanced Federated Learning Scheme for Internet of Everything
    Li, Zerui
    Tian, Yuchen
    Liao, Qing
    Zhang, Weizhe
    Liu, Yang
    Du, Xiaojiang
    Guizani, Mohsen
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2021, 10 (05) : 93 - 101
  • [29] Privacy enhanced data aggregation based on federated learning in Internet of Vehicles (IoV)
    Mun, Hyeran
    Han, Kyusuk
    Damiani, Ernesto
    Kim, Tae-Yeon
    Yeun, Hyun Ku
    Puthal, Deepak
    Yeun, Chan Yeob
    COMPUTER COMMUNICATIONS, 2024, 223 : 15 - 25
  • [30] PCFed: Privacy-Enhanced and Communication-Efficient Federated Learning for Industrial IoTs
    Han, Qing
    Yang, Shusen
    Ren, Xuebin
    Zhao, Peng
    Zhao, Cong
    Wang, Yimeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6181 - 6191