Investigating the fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation: an iterative framework for nonlinear wave dynamics

被引:0
|
作者
Ayata, Muammer [1 ]
机构
[1] Selcuk Univ, Dept Math, Konya, Turkiye
关键词
Caudrey Dodd Gibbon Sawada Kotera equation; conformable laplace decompositon method; nonlinear optics; conformable fractional derivative; adomian decomposition method; DECOMPOSITION METHOD;
D O I
10.1088/1402-4896/ad8f72
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper addresses the solution of the fractional Caudrey-Dodd-Gibbon-Sawada-Kotera(CDGSK)equation using the Conformable Laplace Decomposition Method(CLDM). The CDGSK equation, afundamental model in wave dynamics andfluid mechanics, is explored for its applications in quantummechanics and nonlinear optics. By employing fractional calculus, we demonstrate how fractionalderivatives influence the physical characteristics of wave propagation in both optical and quantumsystems. The exact solutions obtained provide insight into soliton behavior, essential for under-standing wave-particle interactions in quantumfields and light-matter interactions in optics. Thefractional nature of the equation allows for more accurate modeling of non-integer order dynamicscommonly found in opticalfibers and quantum waveguides. The CLDM method proves to be highlyeffective, providing approximate solutions with minimal computational effort. Thesefindings offersignificant contributions to thefields of quantum mechanics and nonlinear optics, where thefractional CDGSK equation can be applied to solve complex wave equations with great accuracy.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Caudrey-Dodd-Gibbon-Kotera-Sawada方程的对称、精确解和守恒律
    王婷婷
    刘希强
    于金倩
    量子电子学报, 2011, 28 (04) : 385 - 390
  • [42] Interaction Behaviours Between Solitons and Cnoidal Periodic Waves for (2+1)-Dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada Equation
    程雪苹
    王建勇
    任博
    杨云青
    CommunicationsinTheoreticalPhysics, 2016, 66 (08) : 163 - 170
  • [43] Interaction Behaviours Between Solitons and Cnoidal Periodic Waves for (2+1)-Dimensional Caudrey Dodd Gibbon Kotera Sawada Equation
    Cheng, Xue-Ping
    Wang, Jian-Yong
    Ren, Bo
    Yang, Yun-Qing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 66 (02) : 163 - 170
  • [44] Characteristics of the solitary waves and lump waves with interaction phenomena in a (2 + 1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation
    Wei-Qi Peng
    Shou-Fu Tian
    Li Zou
    Tian-Tian Zhang
    Nonlinear Dynamics, 2018, 93 : 1841 - 1851
  • [45] Symmetry Reductions and Group-Invariant Solutions of (2+1)-Dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada Equation
    Lue Na
    Mei Jian-Qin
    Zhang Hong-Qing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (04) : 591 - 595
  • [46] N-Lump to the (2+1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation
    Li, Junjie
    Manafian, Jalil
    Wardhana, Aditya
    Othman, Ali J.
    Husein, Ismail
    Al-Thamir, Mohaimen
    Abotaleb, Mostafa
    COMPLEXITY, 2022, 2022
  • [48] M-lump and lump-kink solutions of (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation
    Chen, Jinchao
    Li, Yezhou
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [49] Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics
    Liu, Fei-Yan
    Gao, Yi-Tian
    Yu, Xin
    Hu, Lei
    Wu, Xi-Hu
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [50] (2+1)维Caudrey-Dodd-Gibbon-Kotera-Sawada方程的混合波解
    孙海莹
    扎其劳
    内蒙古师范大学学报(自然科学汉文版), 2022, 51 (06) : 559 - 567