Investigating the fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation: an iterative framework for nonlinear wave dynamics

被引:0
|
作者
Ayata, Muammer [1 ]
机构
[1] Selcuk Univ, Dept Math, Konya, Turkiye
关键词
Caudrey Dodd Gibbon Sawada Kotera equation; conformable laplace decompositon method; nonlinear optics; conformable fractional derivative; adomian decomposition method; DECOMPOSITION METHOD;
D O I
10.1088/1402-4896/ad8f72
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper addresses the solution of the fractional Caudrey-Dodd-Gibbon-Sawada-Kotera(CDGSK)equation using the Conformable Laplace Decomposition Method(CLDM). The CDGSK equation, afundamental model in wave dynamics andfluid mechanics, is explored for its applications in quantummechanics and nonlinear optics. By employing fractional calculus, we demonstrate how fractionalderivatives influence the physical characteristics of wave propagation in both optical and quantumsystems. The exact solutions obtained provide insight into soliton behavior, essential for under-standing wave-particle interactions in quantumfields and light-matter interactions in optics. Thefractional nature of the equation allows for more accurate modeling of non-integer order dynamicscommonly found in opticalfibers and quantum waveguides. The CLDM method proves to be highlyeffective, providing approximate solutions with minimal computational effort. Thesefindings offersignificant contributions to thefields of quantum mechanics and nonlinear optics, where thefractional CDGSK equation can be applied to solve complex wave equations with great accuracy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 12 SETS OF SYMMETRIES OF THE CAUDREY-DODD-GIBBON-SAWADA-KOTERA EQUATION
    LOU, SY
    PHYSICS LETTERS A, 1993, 175 (01) : 23 - 26
  • [2] TWO ANALYTICAL METHODS FOR TIME FRACTIONAL CAUDREY-DODD-GIBBON-SAWADA-KOTERA EQUATION
    Chen, Bin
    Lu, Jun-Feng
    THERMAL SCIENCE, 2022, 26 (03): : 2535 - 2543
  • [3] A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial differential equation
    Baskonus, Haci Mehmet
    Mahmud, Adnan Ahmad
    Muhamad, Kalsum Abdulrahman
    Tanriverdi, Tanfer
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (14) : 8737 - 8753
  • [4] Fractional derivative-based performance analysis to Caudrey-Dodd-Gibbon-Sawada-Kotera equation
    Jhangeer, Adil
    Almusawa, Hassan
    Rahman, Riaz Ur
    RESULTS IN PHYSICS, 2022, 36
  • [5] Numerical study of nonlinear time-fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation arising in propagation of waves
    Rao, Anjali
    Vats, Ramesh Kumar
    Yadav, Sanjeev
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [6] New soliton solutions of conformable time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation in modeling wave phenomena
    Ray, S. Saha
    MODERN PHYSICS LETTERS B, 2019, 33 (18):
  • [7] Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation
    Choi, Jin Hyuk
    Kim, Hyunsoo
    AIMS MATHEMATICS, 2021, 6 (04): : 4053 - 4072
  • [8] Analytical Solutions to the Caudrey-Dodd-Gibbon-Sawada-Kotera Equation via Symbol Calculation Approach
    Gu, Yongyi
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [9] Riemann theta function solutions of the Caudrey-Dodd-Gibbon-Sawada-Kotera hierarchy
    Geng, Xianguo
    He, Guoliang
    Wu, Lihua
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 140 : 85 - 103
  • [10] Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation
    Baleanu, Dumitru
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 222 - 234