Effect of aggregation morphology on thermal conductivity and viscosity of al2o3–co2 nanofluid: A molecular dynamics approach

被引:0
|
作者
Ahmed Z. [1 ]
Bhargav A. [1 ]
机构
[1] Energy Systems Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar, Palaj, GJ
来源
Nanoscience and Technology | 2021年 / 12卷 / 01期
关键词
Aggregated self-assembly; Al2O3–CO2; nanofluid; Molecular dynamics simulation; Thermal conductivity; Viscosity;
D O I
10.1615/NanoSciTechnolIntJ.2020033951
中图分类号
学科分类号
摘要
Transport properties such as thermal conductivity and viscosity of carbon dioxide play an impor-tant role in rapidly evolving applications such as industrial refrigeration and enhanced recovery from oil wells. Although the addition of nanoparticles in CO2-based fluid has been known to enhance these transport properties, a detailed study of the effects of nanoparticle aggregation and its effects on transport properties is missing. In this work, we evaluate the potential energies associated with stable morphologies of Al2O3 nanoparticle aggregates in CO2. Using molecular dynamics simulations and the Green–Kubo formalism, we estimate the thermophysical properties of interest. Results indicate that the enhancement in the thermal conductivity and viscosity of nan-ofluid is inversely proportional to the system potential energy, and nanoparticle aggregation results in thermal conductivity enhancement by up to 70% and in viscosity enhancement by up to 84% at a volume fraction of about 0.9%. Results also indicate that different aggregation mor-phologies result in different potential energies; we expect the results from this paper to provide insights into particle aggregation morphologies and control. © 2021 Begell House, Inc. www.begellhouse.com.
引用
收藏
页码:19 / 37
页数:18
相关论文
共 50 条
  • [41] Analysis of oxide (Al2O3, CuO, and ZnO) and CNT nanoparticles disaggregation effect on the thermal conductivity and the viscosity of nanofluids
    Joohyun Lee
    Yong-Jin Yoon
    John K. Eaton
    Kenneth E. Goodson
    Seoung Jai Bai
    International Journal of Precision Engineering and Manufacturing, 2014, 15 : 703 - 710
  • [42] MEASUREMENTS OF THERMAL-CONDUCTIVITY OF PURE AL2O3 AND AL2O3 - MG - POSSIBLE OBSERVATION OF FE4+ IN AL2O3
    BROWN, MA
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (04): : 642 - 649
  • [43] MgO/Al2O3 Sorbent for CO2 Capture
    Li, Lei
    Wen, Xia
    Fu, Xin
    Wang, Feng
    Zhao, Ning
    Xiao, Fukui
    Wei, Wei
    Sun, Yuhan
    ENERGY & FUELS, 2010, 24 (10) : 5773 - 5780
  • [44] Intelligent dimensional and thermal performance analysis of Al2O3 nanofluid
    Wang, Rong-Tsu
    Wang, Jung-Chang
    ENERGY CONVERSION AND MANAGEMENT, 2017, 138 : 686 - 697
  • [45] Thermal conductivity of Al2O3/SiC platelet composites
    Barea, R
    Belmonte, M
    Osendi, MI
    Miranzo, P
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (11) : 1773 - 1778
  • [46] Effect of nanocrystalline χ-Al2O3 structure on the catalytic behavior of Co/Al2O3 in CO hydrogenation
    Chaitree, Wasu
    Jiemsirilers, Sirithan
    Mekasuwandumrong, Okorn
    Jongsomjit, Bunjerd
    Shotipruk, Artiwan
    Panpranot, Joongjai
    CATALYSIS TODAY, 2011, 164 (01) : 302 - 307
  • [47] A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity
    Hu, Yong
    Du, Guoping
    Chen, Nan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 124 : 36 - 43
  • [48] Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags
    Chen-yang Xu
    Cui Wang
    Ren-ze Xu
    Jian-liang Zhang
    Ke-xin Jiao
    International Journal of Minerals Metallurgy and Materials, 2021, 28 (05) : 797 - 803
  • [49] Interfacial effect on thermal conductivity of Y2O3 thin films deposited on Al2O3
    Yang, Ho-Soon
    Kim, J. W.
    Park, G. H.
    Kim, C. S.
    Kyhm, K.
    Kim, S. R.
    Kim, K. C.
    Hong, K. S.
    THERMOCHIMICA ACTA, 2007, 455 (1-2) : 50 - 54
  • [50] A sensitivity analysis on thermal conductivity of Al2O3-H2O nanofluid: A case based on molecular dynamics and support vector regression method
    Huang, Hongyan
    Li, Chunquan
    Huang, Siyuan
    Shang, Yuling
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 393