Effect of H2S on the corrosion behavior of austenitic and martensitic steels in supercritical CO2 at 550 ° C and 20 MPa for Brayton cycle system

被引:0
|
作者
Li, Aizheng [1 ]
Yang, Yingying [1 ]
Yang, Qiguo [1 ]
Lin, Zhuoyue [1 ]
Jing, Gang [2 ]
Wu, Weidong [1 ]
Zhang, Hua [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
[2] Shandong Jiaotong Univ, Sch Transportat & Logist Engn, Jinan 250023, Peoples R China
关键词
Supercritical carbon dioxide; Brayton cycle; Austenitic steel; Martensitic steels; Hydrogen sulfide; Impurity corrosion; TEMPERATURE; ALLOYS; PHASE;
D O I
10.1016/j.electacta.2024.145206
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Corrosion of alloy materials significantly influences the stability and efficiency of the supercritical carbon dioxide (S-CO2) Brayton cycle. In this study, we investigated the corrosion behavior of the austenitic alloy SP2215 and the martensitic alloy X19CrMoNbVN11-19 (X19) in S-CO2 at 550 degrees C and 20 MPa. The effect of impurities, H2S, on corrosion behavior was studied. After 900 hours, SP2215 formed a 1.1 mu m thick oxide layer (Cr2O3). X19 formed a loose and porous double oxide layer of 4.1 mu m (outer: Fe3O4, inner: FeCr2O4). After H2S doping, SP2215 had an oxide layer of 6.2 mu m (FeS, SiO2, and Cr2O3), while X19 was 9.8 mu m (outer: Fe3O4, SiO2, FexSy and Fe2O3, inner: FeCr2O4, Fe2SiO4 and Cr2S3). Metal sulfides formed and the corrosion layer thickened. This indicates that H2S not only changes the corrosion mechanism but also aggravates the corrosion. However, the corrosion of CO2 is dominant. SP2215 has better corrosion resistance than X19.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions
    Choi, Yoon-Seok
    Nesic, Srdjan
    Ling, Shiun
    ELECTROCHIMICA ACTA, 2011, 56 (04) : 1752 - 1760
  • [32] Corrosion Behavior of Austenitic Stainless Steel in Supercritical CO2 containing O2 and H2O
    Teeter, L.
    Huerta, N.
    Dogan, O.
    Ziomek-Moroz, M.
    Oleksak, R.
    Oryshchyn, D.
    Disenhof, C.
    Baltrus, J.
    Tucker, J.
    CORROSION GENERAL SESSION, 2016, 72 (17): : 137 - 148
  • [33] CORROSION BEHAVIOR OF HIGH-ALLOY STEELS IN THE SYSTEM H2O/NH3/CO2/H2S/HCN/HSCN .2.
    SCHROPFER, J
    WENDLERKALSCH, E
    WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1993, 44 (05): : 171 - 178
  • [34] Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment
    Lü, Xiang-Hong
    Zhao, Guo-Xian
    Zhang, Jian-Bing
    Xie, Kai-Yi
    Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 2010, 32 (02): : 207 - 212
  • [35] Corrosion mechanism of X65 steel exposed to H2S/CO2 brine and H2S/CO2 vapor corrosion environments
    Qin, Min
    Liao, Kexi
    He, Guoxi
    Zou, Qing
    Zhao, Shuai
    Zhang, Shijian
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 106
  • [36] Study on H2S/CO2 corrosion behavior of pipeline steel in wet gas
    School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Cailiao Gongcheng, 2008, 11 (49-53+58):
  • [37] Corrosion Behavior of Ferritic-Martensitic Steel in H2O Containing CO2 and O2 at 50°C to 245°C and 8 MPa
    Repukaiti, Reyixiati
    Teeter, Lucas
    Ziomek-Moroz, Margaret
    Dogan, Omer N.
    Oleksak, Richard P.
    Thomas, Randal B.
    Baltrus, John
    Kauffman, Douglas R.
    Tucker, Julie D.
    CORROSION, 2021, 77 (03) : 313 - 322
  • [38] Research on corrosion behavior of ground gathering pipeline under CO2/H2S/O2 system
    Huang Q.
    Surface Technology, 2021, 50 (04): : 351 - 360
  • [39] Strategies for Corrosion Inhibition of Carbon Steel Pipelines Under Supercritical CO2/H2S Environments
    Choi, Yoon-Seok
    Hassani, Shokrollah
    Thanh Nam Vu
    Nesic, Srdjan
    Abas, Ahmad Zaki B.
    Nor, Azmi Mohammed
    Suhor, Muhammad Firdaus
    CORROSION, 2019, 75 (10) : 1156 - 1172
  • [40] Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment
    Chi Yu
    Hongyan Wang
    Xiuhua Gao
    Hongwei Wang
    Journal of Materials Engineering and Performance, 2020, 29 : 6118 - 6129