Characterization of neutron-irradiated SiPMs down to liquid nitrogen temperature

被引:0
|
作者
Rodriguez, Dania Consuegra [1 ]
Dolenec, Rok [1 ,2 ]
Krizan, Peter [1 ,2 ]
Korpar, Samo [1 ,3 ]
Seljak, Andrej [1 ]
Zontar, Dejan [1 ]
Pestotnik, Rok [1 ]
机构
[1] Jozef Stefan Inst, Expt Particle Phys Dept, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Jadranska ul 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Chem & Chem Engn, Smetanova ul 17, Maribor 2000, Slovenia
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 09期
基金
欧盟地平线“2020”;
关键词
SILICON PHOTOMULTIPLIERS; RADIATION-DAMAGE; PERFORMANCE; DETECTOR;
D O I
10.1140/epjc/s10052-024-13302-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Photodetectors used in future high-energy physics experiments will need to keep sufficient performance during a few years of data-taking despite radiation load, which, for example, in the planned upgrade of the Ring Imaging Cherenkov detectors in Large Hadron Collider beauty (LHCb) experiment is estimated at about 1013\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{13}$$\end{document} 1-MeV neutron equivalent per cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{2}$$\end{document} (neq/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{2}$$\end{document}). Silicon photomultipliers (SiPMs) are considered as candidates for photodetectors for this application. However, their sensitivity to neutron irradiation may seriously compromise their operation, with the increase in dark count rates being the primary limitation after the irradiation. In this work, 1 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 1 mm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{2}$$\end{document} 15 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}m pitch NUV-HD-RH silicon photomultipliers developed by the Fondazione Bruno Kessler were characterized before and after the irradiation. In total, 5 SiPMs were irradiated at the Jo & zcaron;ef Stefan Institute TRIGA nuclear reactor with different fluences from 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{9}$$\end{document} neq/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{2}$$\end{document} up to 1013\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{13}$$\end{document} neq/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{2}$$\end{document}. The SiPMs were also annealed at high temperatures and re-characterized after the annealing. For the SiPM characterization in all the cases, current-voltage (I-V curve) measurements, dark count rate measurements, and waveform analysis, including single photon time resolution, were carried out at different controlled temperature steps from room temperature down to the liquid nitrogen temperature. While cooling to - 20 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C was enough for the SiPM irradiated at 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{9}$$\end{document} neq/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{2}$$\end{document} to recover the ability to resolve single photons, by 1013\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{13}$$\end{document} neq/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{2}$$\end{document}, cooling to liquid nitrogen temperature was necessary. With sufficient cooling, the measured single photon time resolution was around 90 ps FWHM for all irradiation levels.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] LINEAR TEMPERATURE CHANGES IN NEUTRON-IRRADIATED CERAMIC DIELECTRICS.
    Pozdeeva, E.V.
    Ul'yanov, V.L.
    Kostyukov, N.S.
    Glass and Ceramics (English translation of Steklo i Keramika), 1987, 44 (9-10): : 434 - 436
  • [32] EPR IN NEUTRON-IRRADIATED DPPH
    VANITTER.A
    WITTERS, J
    VANAUDEK.R
    NIHOUL, J
    PHYSICA, 1966, 32 (02): : 494 - &
  • [33] EPR spectroscopic characterization of neutron-irradiated nanocrystalline anatase particles
    Huseynov, Elchin M.
    Huseynova, Efsane A.
    Jazbec, Anze
    PHYSICA B-CONDENSED MATTER, 2025, 699
  • [34] ANNEALING OF NEUTRON-IRRADIATED PYROCARBONS
    PRICE, RJ
    BOKROS, JC
    CARBON, 1972, 10 (03) : 348 - &
  • [35] RECOVERY OF NEUTRON-IRRADIATED VANADIUM
    PANDE, BM
    ANAND, MS
    AGARWALA, RP
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1975, 24 (03): : 173 - 175
  • [36] STRUCTURE OF NEUTRON-IRRADIATED SILICA
    LEADBETTER, AJ
    WRIGHT, AC
    PHYSICS AND CHEMISTRY OF GLASSES, 1977, 18 (04): : 79 - 80
  • [37] VOIDS IN NEUTRON-IRRADIATED VANADIUM
    WIFFEN, FW
    STIEGLER, JO
    JOURNAL OF METALS, 1968, 20 (08): : A117 - &
  • [38] THE RECOVERY OF NEUTRON-IRRADIATED ZINC
    NIHOUL, J
    PHYSICA STATUS SOLIDI, 1963, 3 (11): : 2061 - 2068
  • [39] MICROSTRUCTURE OF NEUTRON-IRRADIATED CERAMICS
    YOUNGMAN, RA
    HOBBS, LW
    MITCHELL, TE
    CLINARD, FW
    AMERICAN CERAMIC SOCIETY BULLETIN, 1981, 60 (08): : 862 - 862
  • [40] RECOVERY IN NEUTRON-IRRADIATED TUNGSTEN
    ANAND, MS
    PANDE, BM
    AGARWALA, RP
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1978, 39 (3-4): : 149 - 155