Collective lattice excitations in the dynamic route for melting hydrodynamic two-dimensional crystals

被引:1
|
作者
Kharbedia, Mikheil [1 ]
Caselli, Niccolo [1 ,2 ]
Calero, Macarena [1 ,2 ,3 ]
Moleiro, Lara H. [1 ,2 ]
Castillo, Jesus F. [1 ,2 ]
Santiago, Jose A. [4 ]
Herraez-Aguilar, Diego [5 ]
Monroy, Francisco [1 ,2 ]
机构
[1] Univ Complutense Madrid, Dept Phys Chem, Ciudad Univ S-N, Madrid E-28040, Spain
[2] Inst Invest Sanitaria Hosp Doce Octubre, Translat Biophys, Ave Andalucia S-N, E-28041 Madrid, Spain
[3] Univ Camilo Jose Cela, Fac HM Ciencias Salud, Madrid 28692, Spain
[4] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Vasco Quiroga 4871, Mexico City 05348, Mexico
[5] Univ Francisco de Vitoria, Inst Invest Biosanitarias, Carretera Pozuelo, E-28223 Pozuelo De Alarcon, Spain
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
INCOMPRESSIBLE VISCOUS-FLUID; PATTERN-FORMATION; SQUARE PATTERNS; LOCAL-STRUCTURE; FARADAY; TURBULENCE; SYMMETRY; BREAKING; STATES; WAVES;
D O I
10.1103/PhysRevResearch.6.043142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Liquid surface stiffness generates stable Faraday wave (FW) patterns, known as hydrodynamic crystals, which form resonant FW lattices composed of discrete harmonics and subharmonics under monochromatic driving. Key interactions include inertia-driven parametric resonance, which halves subharmonic modes, and surface rigidity harnessing three-wave coupling, which focuses the nonlinear harmonic wave field. Here, we reveal these wave interaction processes allowing coherent FW packets to organize in space and time while also exciting decoherent disorder in the hydrodynamic crystal lattice. Collective excitations are shown to emerge as dispersionless dislocation waves, causing periodic amplitude modulations due to explicit symmetry breaking. From a field theory perspective, we show chaotic FW degeneration leading to hydrodynamic crystal melting via continuous mode halving under forcing, akin to Landau's theory of chaotic turbulence.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Direct observation of melting in a two-dimensional superconducting vortex lattice
    Guillamon, I.
    Suderow, H.
    Fernandez-Pacheco, A.
    Sese, J.
    Cordoba, R.
    De Teresa, J. M.
    Ibarra, M. R.
    Vieira, S.
    NATURE PHYSICS, 2009, 5 (09) : 651 - 655
  • [32] Direct observation of melting in a two-dimensional superconducting vortex lattice
    Guillamón I.
    Suderow H.
    Fernández-Pacheco A.
    Sesé J.
    Córdoba R.
    De Teresa J.M.
    Ibarra M.R.
    Vieira S.
    Nature Physics, 2009, 5 (9) : 651 - 655
  • [33] Inverse melting in a two-dimensional off-lattice model
    Almudallal, Ahmad M.
    Buldyrev, Sergey V.
    Saika-Voivod, Ivan
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (14):
  • [34] Quantum melting of a two-dimensional vortex lattice at zero temperature
    Rozhkov, A
    Stroud, D
    PHYSICAL REVIEW B, 1996, 54 (18): : 12697 - 12700
  • [35] Bethe ansatz study of two-dimensional soliton lattice melting
    Park, S
    Moon, K
    SOLID STATE COMMUNICATIONS, 2004, 132 (12) : 851 - 856
  • [36] Flux-lattice melting in two-dimensional disordered superconductors
    Li, MS
    Nattermann, T
    PHYSICAL REVIEW B, 2003, 67 (18)
  • [37] DYNAMICS OF THE MELTING TRANSITION OF A TWO-DIMENSIONAL LATTICE OF SUPERCONDUCTING VORTICES
    MARTINOLI, P
    NSABIMANA, M
    BECK, H
    PUGA, M
    HELVETICA PHYSICA ACTA, 1982, 55 (05): : 550 - 551
  • [38] Vortex lattice melting in two-dimensional superconductors in intermediate fields
    Saiki, Taro
    Ikeda, Ryusuke
    PHYSICAL REVIEW B, 2011, 83 (17):
  • [39] Lattice vibrations and elastic constants of three- and two-dimensional quantal Wigner crystals near melting
    Tozzini, V
    Tosi, MP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (43) : 8121 - 8136
  • [40] A two-dimensional hydrodynamic
    Liesegang, RE
    PHYSIKALISCHE ZEITSCHRIFT, 1944, 45 : 44 - 46