Significant spatiotemporal changes in atmospheric particulate mercury pollution in China: Insights from meta-analysis and machine-learning

被引:0
|
作者
Wang, Haolin [1 ]
Li, Tianshuai [1 ]
Wang, Guoqiang [1 ]
Peng, Yanbo [2 ]
Zhang, Qingzhu [1 ]
Wang, Xinfeng [1 ]
Ren, Yuchao [1 ]
Liu, Ruobing [1 ]
Yan, Shuwan [1 ]
Meng, Qingpeng [1 ]
Wang, Yujia [1 ]
Wang, Qiao [1 ]
机构
[1] Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao,266237, China
[2] Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan,250101, China
关键词
D O I
10.1016/j.scitotenv.2024.177184
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Association between atmospheric particulate matter pollution during pregnancy and premature birth in China: a meta-analysis
    Guo, Bingbing
    Jiang, Xinye
    FRONTIERS IN PUBLIC HEALTH, 2025, 13
  • [2] Alterations of throughfall and stemflow chemistry by vegetation in China: Insights from a machine learning based meta-analysis
    Zhang, Yafeng
    Yao, Weiqi
    Yuan, Chuan
    Chen, Ning
    Levia, Delphis F.
    JOURNAL OF HYDROLOGY, 2024, 641
  • [3] Diagnostic performance of machine-learning algorithms for sepsis prediction: An updated meta-analysis
    Zhang, Hongru
    Wang, Chen
    Yang, Ning
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (06) : 4291 - 4307
  • [4] Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis
    Renato Cuocolo
    Maria Brunella Cipullo
    Arnaldo Stanzione
    Valeria Romeo
    Roberta Green
    Valeria Cantoni
    Andrea Ponsiglione
    Lorenzo Ugga
    Massimo Imbriaco
    European Radiology, 2020, 30 : 6877 - 6887
  • [5] Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis
    Cuocolo, Renato
    Cipullo, Maria Brunella
    Stanzione, Arnaldo
    Romeo, Valeria
    Green, Roberta
    Cantoni, Valeria
    Ponsiglione, Andrea
    Ugga, Lorenzo
    Imbriaco, Massimo
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6877 - 6887
  • [6] ARTIFICIAL INTELLIGENCE TO DIAGNOSE ACUTE CORONARY SYNDROMES: INSIGHTS FROM A META-ANALYSIS OF MACHINE LEARNING
    Thao Huynh
    Iannatonne, Patrick
    Zhao, Xun
    Philippe Minh Tri Nguyen
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (11) : 20 - 20
  • [7] Threats to the soil microbiome from nanomaterials: A global meta and machine-learning analysis
    Chen, Sensen
    Teng, Ying
    Luo, Yongming
    Kuramae, Eiko
    Ren, Wenjie
    SOIL BIOLOGY & BIOCHEMISTRY, 2024, 188
  • [8] Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights
    Pasolli, Edoardo
    Duy Tin Truong
    Malik, Faizan
    Waldron, Levi
    Segata, Nicola
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (07)
  • [9] Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis
    Devon Watts
    Rafaela Fernandes Pulice
    Jim Reilly
    Andre R. Brunoni
    Flávio Kapczinski
    Ives Cavalcante Passos
    Translational Psychiatry, 12
  • [10] Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis
    Watts, Devon
    Pulice, Rafaela Fernandes
    Reilly, Jim
    Brunoni, Andre R.
    Kapczinski, Flavio
    Passos, Ives Cavalcante
    TRANSLATIONAL PSYCHIATRY, 2022, 12 (01)