Moisture Exposure as Pretreatment of Sulfide Solid Electrolytes for All-Solid-State Batteries

被引:0
|
作者
Sano, Hikaru [1 ]
Morino, Yusuke [1 ]
Shiota, Akihiro [1 ]
Takahashi, Tsukasa [2 ]
Miyashita, Norihiko [2 ]
Kawamoto, Koji [1 ]
机构
[1] Consortium Lithium Ion Battery Technol Evaluat Ctr, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan
[2] Mitsui Min & Smelting Co Ltd, 1333-2 Haraichi, Ageo, Saitama 3620021, Japan
关键词
Surface Coating; Sulfide-based Solid Electrolyte; All-solid-state Lithium-ion Battery; INTERFACE; LICOO2;
D O I
10.5796/electrochemistry.24-00090
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Sulfide all-solid-state batteries have been actively studied for practical use in vehicle applications. Modifications are often required at the interface between the sulfide solid electrolyte and oxide cathode active material. Scholars have reported that only the surface of the sulfide solid electrolyte is degraded by moisture exposure at a dew point equal to that of a dry room for common lithium-ion battery fabrication and that the surface-degraded material contains lithium carbonate and other lithium salts. Additionally, researchers have reported that lithium salts including lithium carbonate are effective for surface modification of cathode active materials. This paper reports how lithium carbonate is formed by the reaction of a carbon-free solid electrolyte with carbon-free water and that degraded surface of sulfide solid electrolyte by exposure to moisture acts as an effective modifying layer at the interface between the active material and solid electrolyte for all-solid-state batteries.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Research progress on chloride solid electrolytes for all-solid-state batteries
    Zheng, Mingyuan
    Li, Xin
    Sun, Jianwei
    Wang, Xinlu
    Liu, Guixia
    Yu, Wensheng
    Dong, Xiangting
    Wang, Jinxian
    JOURNAL OF POWER SOURCES, 2024, 595
  • [32] Studies of lithium argyrodite solid electrolytes for all-solid-state batteries
    Rao, R. P.
    Adams, S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1804 - 1807
  • [33] Practically Accessible All-Solid-State Batteries Enabled by Organosulfide Cathodes and Sulfide Electrolytes
    Ji, Weixiao
    Zhang, Xiaoxiao
    Zheng, Dong
    Huang, He
    Lambert, Tristan H.
    Qu, Deyang
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (27)
  • [34] All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes
    Park, Young Seon
    Lee, Jae Min
    Yi, Eun Jeong
    Moon, Ji-Woong
    Hwang, Haejin
    MATERIALS, 2021, 14 (08)
  • [35] Halide and Sulfide Electrolytes in Cathode Composites for Sodium All-Solid-State Batteries and their Stability
    Goodwin, Laura E.
    Ziegler, Maya
    Till, Paul
    Nazer, Nazia
    Adelhelm, Philipp
    Zeier, Wolfgang G.
    Richter, Felix H.
    Janek, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (15) : 19792 - 19805
  • [36] Insights into the chemical and electrochemical behavior of halide and sulfide electrolytes in all-solid-state batteries
    Tron, Artur
    Beutl, Alexander
    Mohammad, Irshad
    Paolella, Andrea
    ENERGY ADVANCES, 2025,
  • [37] Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries
    Tatsumisago, Masahiro
    Hayashi, Akitoshi
    INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2014, 5 (03) : 226 - 235
  • [38] Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes
    Xu, Ruochen
    Zhang, Shengzhao
    Wang, Xiuli
    Xia, Yan
    Xia, Xinhui
    Wu, Jianbo
    Gu, Changdong
    Tu, Jiangping
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (23) : 6007 - +
  • [39] A review of polymers in sulfide-based hybrid solid-state electrolytes for all-solid-state lithium batteries
    Kim, Minjae
    Seo, Junhyeok
    Suba, Jeanie Pearl Dizon
    Cho, Kuk Young
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (22) : 5475 - 5499
  • [40] Current Status and Future Directions in Environmental Stability of Sulfide Solid-State Electrolytes for All-Solid-State Batteries
    Liang, Jianwen
    Li, Xiaona
    Wang, Changhong
    Kim, Jung Tae
    Yang, Rong
    Wang, Jiantao
    Sun, Xueliang
    ENERGY MATERIAL ADVANCES, 2023, 4