The development of an augmented machine learning approach for the additive manufacturing of thermoelectric materials

被引:0
|
作者
Headley, Connor V. [1 ]
Herrera del Valle, Roberto J. [1 ]
Ma, Ji [1 ]
Balachandran, Prasanna [1 ,2 ]
Ponnambalam, Vijayabarathi [3 ]
LeBlanc, Saniya [3 ]
Kirsch, Dylan [4 ,5 ]
Martin, Joshua B. [4 ]
机构
[1] Department of Materials Science and Engineering, University of Virginia, Charlottesville,VA,22903, United States
[2] Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville,VA,22903, United States
[3] Department of Mechanical and Aerospace Engineering, George Washington University, Washington D.C.,20052, United States
[4] Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg,MD,20899, United States
[5] Department of Materials Science & Engineering, University of Maryland, College Park,MD,20742, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Iterative methods
引用
收藏
页码:165 / 175
相关论文
共 50 条
  • [41] A machine learning approach for the prediction of tensile deformation behavior in wire arc additive manufacturing
    Chigilipalli, Bharat Kumar
    Veeramani, Anandakrishnan
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2025, 19 (01): : 185 - 197
  • [42] An in situ crack detection approach in additive manufacturing based on acoustic emission and machine learning
    Kononenkoa, Denys Y.
    Nikonovaa, Viktoriia
    Seleznevb, Mikhail
    Brinka, Jeroen van den
    Chernyavsky, Dmitry
    ADDITIVE MANUFACTURING LETTERS, 2023, 5
  • [43] Design and Additive Manufacturing of Porous Sound Absorbers-A Machine-Learning Approach
    Kuschmitz, Sebastian
    Ring, Tobias P.
    Watschke, Hagen
    Langer, Sabine C.
    Vietor, Thomas
    MATERIALS, 2021, 14 (07)
  • [44] Augmented reality in additive manufacturing
    Vogt M.
    Rips A.
    Emmelmann C.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2020, 115 (11): : 800 - 804
  • [45] Machine Learning for Process Monitoring Systems: Examples from laser materials processing to additive manufacturing
    Grünberger, Thomas
    PhotonicsViews, 2020, 17 (03) : 56 - 59
  • [46] Quantum Machine Learning for Additive Manufacturing Process Monitoring
    Choi, Eunsik
    Sul, Jinhwan
    Kim, Jungin E.
    Hong, Sungjin
    Gonzalez, Beatriz Izquierdo
    Cembellin, Pablo
    Wang, Yan
    MANUFACTURING LETTERS, 2024, 41 : 1415 - 1422
  • [47] Towards Machine Learning for Error Compensation in Additive Manufacturing
    Omairi, Amzar
    Ismail, Zool Hilmi
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 27
  • [48] Use of Machine Learning to Improve Additive Manufacturing Processes
    Rojek, Izabela
    Kopowski, Jakub
    Lewandowski, Jakub
    Mikolajewski, Dariusz
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [49] Additive manufacturing trends: Artificial intelligence & machine learning
    Holm, Elizabeth A.
    Williams, James C.
    Herderick, Edward D.
    Huang, Hanchen
    Advanced Materials and Processes, 2020, 178 (05): : 32 - 33
  • [50] Quantum machine learning for additive manufacturing process monitoring
    Choi, Eunsik
    Sul, Jinhwan
    Kim, Jungin E.
    Hong, Sungjin
    Gonzalez, Beatriz Izquierdo
    Cembellin, Pablo
    Wang, Yan
    Manufacturing Letters, 2024, 41 : 1415 - 1422