A new model for predicting IRI using TabNet with hunter-prey optimization

被引:0
|
作者
Lu, Xin [1 ,2 ,3 ]
Xing, Zhenzhen [4 ]
Pei, Lili [5 ]
Hao, Jun [4 ]
Du, Yaohui [4 ]
机构
[1] Changan Univ, Mat Sci & Engn, Xian, Peoples R China
[2] Shaanxi Expressway Testing & Measuring Co Ltd, Xian, Peoples R China
[3] Xian Highway Res Inst Co Ltd, Xian, Peoples R China
[4] Changan Univ, Sch Informat Engn, Xian, Peoples R China
[5] Changan Univ, Sch Data Sci & Artificial Intelligence, Xian, Peoples R China
关键词
International roughness index; pavement performance prediction; multisource data integration; TabNet; parameter optimisation;
D O I
10.1080/10298436.2024.2414070
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To address the prediction problem of the international roughness index (IRI), which is influenced by multiple factors, we propose a hunter-prey optimization (H-PO) TabNet prediction model. First, we combined multiple data sources, including traffic flow, climate data, pavement basic, and pavement condition data, aligned with annual detection data for highways at a spatial resolution of 100 m. Second, we conducted feature importance analysis on the integrated dataset to identify the most significant factors influencing pavement surface smoothness, which serve as inputs for the prediction model. We employed multiple machine-learning prediction models to predict the IRI using the compiled multisource dataset. After comparing the predictive performance of different models, we selected the TabNet model as the base model and optimised its parameter tuning process using the H-PO algorithm. Finally, ablation experiments were conducted to validate the proposed model. The results demonstrate that the H-PO-TabNet model achieved the best performance, with an R2 increase of 7.92% compared with a model with default parameter settings. The H-PO-TabNet model also attained the highest overall accuracy, with an R2 value of 0.8763. This model can improve the accuracy of IRI prediction and provide certain data support for pavement maintenance activities.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Spatial mapping of land susceptibility to dust emissions using optimization of attentive Interpretable Tabular Learning (TabNet) model
    Razavi-Termeh, Seyed Vahid
    Sadeghi-Niaraki, Abolghasem
    Sorooshian, Armin
    Abuhmed, Tamer
    Choi, Soo-Mi
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 358
  • [32] Hybrid rat swarm hunter prey optimization trained deep learning for network intrusion detection using CNN features
    Parameswari, A.
    Ganeshan, R.
    Ragavi, V.
    Shereesha, M.
    COMPUTERS & SECURITY, 2024, 139
  • [33] Clinicopathological profile of peritoneal tuberculosis and a new scoring model for predicting mortality: an international ID-IRI study
    Tanoglu, Alpaslan
    Erdem, Hakan
    Friedland, Jon S.
    Ankarali, Handan
    Garcia-Goez, Jose Fernando
    Albayrak, Ayse
    El-Kholy, Amani
    Ceviker, Sevil Alkan
    Amer, Fatma
    Erol, Serpil
    Darazam, Ilad Alavi
    Rabiei, Mohammad Mahdi
    Sarwar, Muhammad Zeeshan
    Zeb, Misbah
    Nawaz, Hassan
    Ceylan, Mehmet Resat
    Cernat, Roxana
    Tasbakan, Meltem
    Ayoade, Folusakin
    Ruch, Yvon
    Tigen, Elif Tuekenmez
    Angioni, Goffredo
    Rajani, Dhanji P.
    Akhtar, Nasim
    Surme, Serkan
    Sengoz, Gonul
    Karlidag, Gulden Eser
    Marino, Andrea
    Ripon, Rezaul Karim
    Cag, Yasemin
    Aydin, Ozlem
    Akkoyunlu, Yasemin
    Seyman, Derya
    Angamuthu, Kumar
    Cascio, Antonio
    Popescu, Corneliu Petru
    Sirmatel, Fatma
    Eren, Esma
    Dar, Razi Even
    Munu, Foday Usman
    Tanoglu, Esra Guzel
    Echeverry, Esteban
    Velez, Juan Diego
    Artuk, Cumhur
    Balin, Safak Ozer
    Pandya, Nirav
    Erdem, Aysegul
    Demiray, Emine Kuebra Dindar
    Aypak, Adalet
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2023, 42 (08) : 981 - 992
  • [34] Clinicopathological profile of peritoneal tuberculosis and a new scoring model for predicting mortality: an international ID-IRI study
    Alpaslan Tanoglu
    Hakan Erdem
    Jon S. Friedland
    Handan Ankaralı
    Jose Fernando Garcia-Goez
    Ayse Albayrak
    Amani El-Kholy
    Sevil Alkan Ceviker
    Fatma Amer
    Serpil Erol
    Ilad Alavi Darazam
    Mohammad Mahdi Rabiei
    Muhammad Zeeshan Sarwar
    Misbah Zeb
    Hassan Nawaz
    Mehmet Resat Ceylan
    Roxana Cernat
    Meltem Tasbakan
    Folusakin Ayoade
    Yvon Ruch
    Elif Tükenmez Tigen
    Goffredo Angioni
    Dhanji P. Rajani
    Nasim Akhtar
    Serkan Surme
    Gonul Sengoz
    Gulden Eser Karlıdag
    Andrea Marino
    Rezaul Karim Ripon
    Yasemin Çağ
    Özlem Aydın
    Yasemin Akkoyunlu
    Derya Seyman
    Kumar Angamuthu
    Antonio Cascio
    Corneliu Petru Popescu
    Fatma Sirmatel
    Esma Eren
    Razi Even Dar
    Foday Usman Munu
    Esra Guzel Tanoglu
    Esteban Echeverry
    Juan Diego Velez
    Cumhur Artuk
    Safak Ozer Balin
    Nirav Pandya
    Aysegul Erdem
    Emine Kübra Dindar Demiray
    Adalet Aypak
    European Journal of Clinical Microbiology & Infectious Diseases, 2023, 42 : 981 - 992
  • [35] Predicting the splitting tensile strength of concrete using an equilibrium optimization model
    Zhao, Yinghao
    Zhong, Xiaolin
    Foong, Loke Kok
    STEEL AND COMPOSITE STRUCTURES, 2021, 39 (01): : 81 - 93
  • [36] A New Model for Predicting Rate of Penetration Using an Artificial Neural Network
    Elkatatny, Salaheldin
    Al-AbdulJabbar, Ahmed
    Abdelgawad, Khaled
    SENSORS, 2020, 20 (07)
  • [37] Predicting corresponding colours using a new chromatic-adaptation model
    Kuo, WG
    COLOR RESEARCH AND APPLICATION, 1997, 22 (06): : 375 - 384
  • [38] Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm
    Samareh, Hossein
    Khoshrou, Seyed Hassan
    Shahriar, Kourosh
    Ebadzadeh, Mohammad Mehdi
    Eslami, Mohammad
    JOURNAL OF AFRICAN EARTH SCIENCES, 2017, 133 : 36 - 45
  • [39] A New Model for Optimization of Hybrid Microgrids Using an Evolutive Approach
    Marcelino, C.
    Baumann, M.
    Almeida, P.
    Wanner, E.
    Weil, M.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (03) : 799 - 805
  • [40] A new condition assessment Model and optimization by using hybrid GA
    Shi, Huichang
    WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2006, : 89 - 93