Molecular Dynamics and Self-Assembly in Double Hydrophilic Block and Random Copolymers

被引:0
|
作者
Pipertzis, Achilleas [1 ]
Chroni, Angeliki [2 ]
Pispas, Stergios [2 ]
Swenson, Jan [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Natl Hellen Res Fdn, Theoret & Phys Chem Inst, Athens 11635, Greece
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 45期
关键词
DIFFERENTIAL SCANNING CALORIMETRY; SEGMENTAL DYNAMICS; RELAXATION;
D O I
10.1021/acs.jpcb.4c05398
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the self-assembly and dynamics of double hydrophilic block copolymers (DHBCs) composed of densely grafted poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) parent blocks by means of calorimetry, small- and wide-angle X-ray scattering (SAXS/WAXS), and dielectric spectroscopy. A weak segregation strength is evident from X-ray measurements, implying a disordered state and reflecting the inherent miscibility between the host homopolymers. The presence of intermixed POEGMA/PVBTMAC nanodomains results in homogeneous molecular dynamics, as evidenced through isothermal dielectric and temperature-modulated DSC measurements. The intermixed process undergoes a glass transition at a temperature approximately 40 K higher than the vitrification of bulk POEGMA segments, and it shifts to an even higher temperature by increasing the content of the hard block. At temperatures below the intermixed glass transition temperature, the confined POEGMA segments between the glassy intermixed regions contribute to a segmental process featuring (i) reduced glass transition temperature (T g), (ii) reduced dielectric strength, (iii) broader distribution of relaxation times, and (iv) reduced fragility compared to the POEGMA homopolymer. We also observe two glass transition temperatures of dry PVBTMAC, which we attribute to the backbone and side chain segmental relaxation. To the best of our knowledge, this is the first time in the literature that these glass transitions of dry PVBTMAC have been reported. Finally, this study shows that excellent mixing of the two homopolymers is obtained, and this implies that different properties of this copolymer system can be tailored by adjusting the concentration of each homopolymer.
引用
收藏
页码:11267 / 11276
页数:10
相关论文
共 50 条
  • [41] Self-Assembly of Block Copolymers in Ionic Liquids
    Xie, Ru
    Lopez-Barron, Carlos R.
    Wagner, Norman J.
    IONIC LIQUIDS: CURRENT STATE AND FUTURE DIRECTIONS, 2017, 1250 : 83 - 142
  • [42] Self-assembly of responsive polypeptide block copolymers
    Savin, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [43] Self-assembly of block copolymers in thin films
    Matsen, MW
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1998, 3 (01) : 40 - 47
  • [44] Combining synthesis with self-assembly in block copolymers
    Wang, Muzhou
    Qiang, Zhe
    Akolawala, Sahil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [45] Self-assembly of copolymers containing a polypeptide block
    Castelletto, V.
    Newby, G. E.
    Zhu, Z.
    Hamley, I. W.
    Noirez, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C230 - C230
  • [46] Synthesis and Self-Assembly of Conjugated Block Copolymers
    Xiao, Lin-Lin
    Zhou, Xu
    Yue, Kan
    Guo, Zi-Hao
    POLYMERS, 2021, 13 (01) : 1 - 20
  • [47] Phase transition and self-assembly in block copolymers
    Hashimoto, T
    MACROMOLECULAR SYMPOSIA, 2001, 174 : 69 - 83
  • [48] Self-assembly of chiral block and gradient copolymers
    Bloksma, Meta M.
    Hoeppener, Stephanie
    D'Haese, Cecile
    Kempe, Kristian
    Mansfeld, Ulrich
    Paulus, Renzo M.
    Gohy, Jean-Francois
    Schubert, Ulrich S.
    Hoogenboom, Richard
    SOFT MATTER, 2012, 8 (01) : 165 - 172
  • [49] Controlling the self-assembly of functional block copolymers
    Campos, Luis M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [50] Limits of Directed Self-Assembly in Block Copolymers
    Gadelrab, Karim R.
    Ding, Yi
    Pablo-Pedro, Ricardo
    Chen, Hsieh
    Gotrik, Kevin W.
    Tempel, David G.
    Ross, Caroline A.
    Alexander-Katz, Alfredo
    NANO LETTERS, 2018, 18 (06) : 3766 - 3772