Multi-Class Brain Lesion Classification Using Deep Transfer Learning With MobileNetV3

被引:2
|
作者
Majeed, Ahmed Firas [1 ]
Salehpour, Pedram [1 ]
Farzinvash, Leili [1 ]
Pashazadeh, Saeid [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Dept Comp Engn, Tabriz, Iran
来源
IEEE ACCESS | 2024年 / 12卷
关键词
pre-trained models; transfer learning; Brain tumor detection; MobileNetV3Small; MRI classification;
D O I
10.1109/ACCESS.2024.3413008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diagnosing brain tumors is challenging for radiologists because of the significant similarities between the tumor types. Deep learning models lack sufficient data to effectively learn the patterns of different tumors, leading adopting of transfer learning as a successful approach. However, many existing models used for this purpose are complex and involve numerous parameters and layers. In this study, we employed a lightweight MobileNetV3 model to extract features, specifically designed for mobile CPU usage, to transfer knowledge. We then design our model for brain lesion classification by incorporating lightweight DepthWise and PointWise blocks. A combination of three datasets with identical image structures is utilized, and compared its classification performance with both pre-trained and fine-tuned methods. The proposed model achieves an accuracy of 91%, outperforming other pre-trained and fine-tuned methods. Furthermore, we conduct separate accuracy assessments for each dataset, demonstrating superior performance compared to existing methods. Specifically, our model achieves an accuracy of 91% on the NINS 2022 dataset and 94% on the SBE-SMU dataset.
引用
收藏
页码:155295 / 155308
页数:14
相关论文
共 50 条
  • [41] A Study on Multi-class Classification of Breast Cancer Images using Ensemble Network and Transfer Learning
    Tipirneni L.
    Patan R.
    Recent Patents on Engineering, 2021, 15 (06)
  • [42] Multi-Class Confidence Detection Using Deep Learning Approach
    Mujahid, Amna
    Aslam, Muhammad
    Khan, Muhammad Usman Ghani
    Martinez-Enriquez, Ana Maria
    Ul Haq, Nazeef
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [43] A Novel Deep Learning Based Multi-class Classification Method for Alzheimer's Disease Detection Using Brain MRI Data
    Islam, Jyoti
    Zhang, Yanqing
    BRAIN INFORMATICS, BI 2017, 2017, 10654 : 213 - 222
  • [44] Beyond binary: multi-class skin lesion classification with AlexNet transfer learning-towards enhanced dermatological diagnosis
    Noaman, Abida
    Ahmad, Reyaz
    Khan, Muhammad Farhan
    Mohammed, Abdul Salam
    Farooq, Muhammad
    Adnan, Khan Muhammad
    DISCOVER APPLIED SCIENCES, 2024, 7 (01)
  • [45] An active learning algorithm for multi-class classification
    Liu, Dongjiang
    Liu, Yanbi
    PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (03) : 1051 - 1063
  • [46] Multi-class classification in nonparametric active learning
    Njike, Boris Ndjia
    Siebert, Xavier
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [47] Detection and Multi-Class Classification of Invasive Knotweeds with Drones and Deep Learning Models
    Valicharla, Sruthi Keerthi
    Karimzadeh, Roghaiyeh
    Naharki, Kushal
    Li, Xin
    Park, Yong-Lak
    DRONES, 2024, 8 (07)
  • [48] Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification
    Vang, Yeeleng S.
    Chen, Zhen
    Xie, Xiaohui
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 914 - 922
  • [49] A Novel Fused Multi-Class Deep Learning Approach for Chronic Wounds Classification
    Aldoulah, Zaid A.
    Malik, Hafiz
    Molyet, Richard
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [50] Multi-Class Active Learning for Image Classification
    Joshi, Ajay J.
    Porikli, Fatih
    Papanikolopoulos, Nikolaos
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2364 - +