Simulation of Nanoparticle Implantation into Material Using Laser Shock Waves

被引:0
|
作者
Sakhvadze, G. Zh. [1 ]
Sakhvadze, G. G. [1 ]
机构
[1] Russian Acad Sci, Mech Engn Res Inst, Moscow, Russia
关键词
nanoparticle implantation; laser shock wave; modeling; finite element method; implantation depth; MECHANICAL-PROPERTIES; AL SURFACE; ALUMINUM; MICROSTRUCTURE; MODEL;
D O I
10.1134/S1052618824701267
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new technology called laser shock wave-assisted nanoparticle implantation into the surface layer of a light alloy is considered. Finite element and analytical models have been developed to determine the implantation depth of WC nanoparticles into an aluminum substrate during laser shock wave implantation of nanoparticles. Two modes are considered: a single application of nanoparticle implantation technology into the surface layer, and a sequential double application of nanoparticle implantation into the surface layer. The obtained results showed that in both modes studied, nanoparticles are implanted into the surface layer of the 5A06 aluminum alloy with different intensities. It is shown that the implantation depths of nanoparticles calculated using the finite element method and the analytical model are in good agreement with the experimental data, which confirms the reliability of the developed implantation depth models.
引用
收藏
页码:609 / 616
页数:8
相关论文
共 50 条
  • [41] Experimental Analysis of Microscale Laser Shock Processing on Metallic Material Using Excimer Laser
    Che, Zhigang
    Xiong, Liangcai
    Shi, Tielin
    Cheng, Huayang
    Yang, Likun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2009, 25 (06) : 829 - 834
  • [43] LASER SHOCK-WAVES IN SOLIDS
    ZAKHAROV, NS
    BUGROV, NV
    KHIMICHESKAYA FIZIKA, 1993, 12 (05): : 754 - 754
  • [44] The Echo Simulation of Laser Sonar Using the Random Waves Model
    Cui, JingFei
    2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SCIENCE AND APPLICATION (FCSA 2011), VOL 3, 2011, : 263 - 266
  • [45] Thermal Simulation Modeling of IGBT Module Using Silver Nanoparticle Sintering Material
    Wang, Hu
    Yang, Daoguo
    Cai, Miao
    Wang, Xiyou
    Liang, Zhi
    2018 19TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2018, : 904 - 907
  • [46] OBSERVATION OF DYNAMIC TENSILE FAILURE IN LEAD USING LASER GENERATED SHOCK WAVES
    ANDERHOLM, NC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (01): : 88 - +
  • [47] Physical approach to adhesion testing using laser-driven shock waves
    Bolis, C.
    Berthe, L.
    Boustie, M.
    Arrigoni, M.
    Barradas, S.
    Jeandin, M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (10) : 3155 - 3163
  • [48] Measurements of laser induced shock waves in aluminum targets using PVDF gauges
    Li, ZY
    Zhu, WH
    Cheng, JY
    Xi, J
    Guo, DH
    Wu, HX
    LASER PROCESSING OF MATERIALS AND INDUSTRIAL APPLICATIONS, 1996, 2888 : 232 - 236
  • [49] Athermal annealing of semiconductors using shock waves generated by a laser-plasma
    Fischer, RP
    Grun, J
    Mignogna, R
    Donnelly, DW
    Covington, B
    SHOCK COMPRESSION OF CONDENSED MATTER - 2003, PTS 1 AND 2, PROCEEDINGS, 2004, 706 : 1381 - 1384
  • [50] Micromechanical model of nanoparticle compaction and shock waves in metal powders
    Mayer, Alexander E.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2021, 147