MPLNet: Multi-task supervised progressive learning network for diabetic retinopathy grading

被引:0
|
作者
Xie, Yining [1 ]
Zhang, Yuhang [2 ]
Long, Jun [1 ]
Que, Nanshuang [2 ]
Chen, Yu [2 ]
机构
[1] Northeast Forestry Univ, Coll Mech & Elect Engn, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
关键词
Diabetic retinopathy grading; Attention mechanism; Progressive learning (PL);
D O I
10.1016/j.compeleceng.2024.109746
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic Retinopathy (DR) is a retinal disease resulting from diabetes. In severe cases, it can lead to irreversible damage to the retina or even blindness. Employing deep learning models to assist in DR diagnosis and classification can alleviate the burden of screening. However, challenges such as the tendency of models to overlook subtle lesions (e.g., microaneurysms) in retinal images and the imbalance in DR data distribution hinder accurate grading. To address these issues, this paper proposes a multi-task supervised progressive learning network (MPLNet) consisting of a Lesion-aware feature extraction Module (LFM) and a Category feature extraction Module (CFM). The network utilizes two progressive tasks - DR identification and DR grading - to guide the LFM and CFM in extracting comprehensive lesion information and then learning discriminative features for each category, thereby enhancing the performance of DR grading. Additionally, to improve the feature extraction capabilities of the two modules, this paper introduces the Detail Attention Module (DAM) and the Category Attention Module (CAM). DAM enhances the detection ability of tiny abnormal areas in the retinal images from both channel and spatial dimensions. The CAM thoroughly explores the critical features of each category from multiple dimensions, thereby reducing the impact of data imbalance. The proposed method achieved kappa scores of 87.0%, 88.2%, and 93.0% on the DDR, Messidor-2, and APTOS datasets, respectively. Experimental results demonstrate that MPLNet outperforms other DR grading methods. T-SNE and Grad-CAM visualization techniques verify the interpretability of the model.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-Task Learning for Diabetic Retinopathy Grading and Lesion Segmentation
    Foo, Alex
    Hsu, Wynne
    Lee, Mong Li
    Lim, Gilbert
    Wong, Tien Yin
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13267 - 13272
  • [2] Deep Multi-Task Learning for Diabetic Retinopathy Grading in Fundus Images
    Wang, Xiaofei
    Xu, Mai
    Zhang, Jicong
    Jiang, Lai
    Li, Liu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2826 - 2834
  • [3] Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading
    Zhou, Kang
    Gu, Zaiwang
    Liu, Wen
    Luo, Weixin
    Cheng, Jun
    Gao, Shenghua
    Liu, Jiang
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2724 - 2727
  • [4] SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
    Ullah, Zahid
    Usman, Muhammad
    Latif, Siddique
    Khan, Asifullah
    Gwak, Jeonghwan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
    Zahid Ullah
    Muhammad Usman
    Siddique Latif
    Asifullah Khan
    Jeonghwan Gwak
    Scientific Reports, 13
  • [6] A Multi-Task Learning and Multi-Branch Network for DR and DME Joint Grading
    Xing, Xiaoxue
    Mao, Shenbo
    Yan, Minghan
    Yu, He
    Yuan, Dongfang
    Zhu, Cancan
    Zhang, Cong
    Zhou, Jian
    Xu, Tingfa
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [7] Task Switching Network for Multi-task Learning
    Sun, Guolei
    Probst, Thomas
    Paudel, Danda Pani
    Popovic, Nikola
    Kanakis, Menelaos
    Patel, Jagruti
    Dai, Dengxin
    Van Gool, Luc
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8271 - 8280
  • [8] Semi-Supervised Multi-Task Learning with Task Regularizations
    Wang, Fei
    Wang, Xin
    Li, Tao
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 562 - 568
  • [9] Multi-task Deep Learning for Colon Cancer Grading
    Thi Le Trinh Vuong
    Lee, Daigeun
    Kwak, Jin Tae
    Kim, Kyungeun
    2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2020,
  • [10] ACTIVE LEARNING FOR SEMI-SUPERVISED MULTI-TASK LEARNING
    Li, Hui
    Liao, Xuejun
    Carin, Lawrence
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1637 - +