Heterostructuring the CO2-derived Mo2C layer with MoP2 via molten salt electrolysis for efficient hydrogen evolution reaction

被引:0
|
作者
Zhong, Shuiping [1 ,2 ,3 ]
Lei, Tianhan [1 ]
Liang, Licong [1 ]
Chi, Xiaopeng [1 ,2 ]
Weng, Wei [1 ,2 ]
Cheng, Chen [4 ]
Tang, Ding [3 ]
机构
[1] Fuzhou Univ, Zijin Sch Geol & Min, Fuzhou 350108, Peoples R China
[2] Fuzhou Univ, Fujian Key Lab Green Extract & High Value Utilizat, Fuzhou 350108, Peoples R China
[3] Zijin Min Grp Co Ltd, Longyan 364200, Peoples R China
[4] Jiangxi Univ Sci & Technol, Sch Resource & Environm Engn, Ganzhou 34100, Jiangxi, Peoples R China
关键词
DOPED CARBON; ELECTROCATALYST;
D O I
10.1016/j.ijhydene.2024.11.362
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical fixation of CO2 in molten salts as carbides for catalyzing the hydrogen evolution reaction can contribute to carbon neutrality and value-added conversion of CO2 as well as facilitate the production of sustainable green hydrogen energy. However, the functional ability of the CO2-derived carbides still needs to be substantially improved. Herein, heterostructuring the CO2-derived Mo2C layer with MoP2 is realized via electrosplitting of CO2 in Ca3(PO4)2-containing molten salt. The as-designed Mo2C-MoP2 heterostructure layer presents significantly improved HER performances, namely overpotential being 109 mV @ 100 mA cm-2 and stability for 600 h @ 200 mA cm- 2 , greatly outperforming both the bare Mo2C layer and commercial Pt candidates. The superior performances of the Mo2C-MoP2 heterostructure are in one way attributed to the modified electronic structure that decrease the energy barrier of the Volmer rate-determining step for HER. In another way, the Mo2C-MoP2 dual-phase increases the hydrophilicity ability of the catalytic layer, accelerating the detachment of the H2 bubbles. The results can provide new insights for both value-added fixation of carbon dioxide and preparation of high-performance non-noble electrocatalyst.
引用
收藏
页码:485 / 493
页数:9
相关论文
共 50 条
  • [41] Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy
    Gu, Jianxia
    Zhu, Ying
    Zheng, Haiyan
    Sun, Chunyi
    Su, Zhongmin
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2024, 18 (05)
  • [42] Scalable synthesis of Mo2C/CNT networks as highly efficient and stable electrocatalyst for hydrogen evolution reaction
    Hu, Yang
    Guan, Deng-gao
    Yu, Bo
    Hou, Wenqiang
    Zheng, Binjie
    Zhang, Wanli
    Chen, Yuanfu
    ELECTROCHIMICA ACTA, 2018, 263 : 192 - 200
  • [43] Mo2C nanoparticles coated tubular carbon nanofibers as a highly efficient electrocatalyst for the hydrogen evolution reaction
    Liu, Lei
    Liu, Huan
    Sun, Xingwei
    Bai, Jie
    Li, Chunping
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2022, 163
  • [44] Synthesis of Porous Mo2C/Nitrogen-Doped Carbon Nanocomposites for Efficient Hydrogen Evolution Reaction
    Li, Siwei
    Dong, Baichuan
    Yuanyuan
    Zhang
    Xu, Ping
    CHEMISTRYSELECT, 2020, 5 (45): : 14307 - 14311
  • [45] Hybrid Nanostructured Compounds of Mo2C on Vertical Graphene Nanoflakes for a Highly Efficient Hydrogen Evolution Reaction
    Chaitoglou, Stefanos
    Amade, Roger
    Ospina, Rogelio
    Bertran-Serra, Enric
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 6120 - 6131
  • [46] ZIF-67 derived Mo2N/Mo2C heterostructure as high-efficiency electrocatalyst for hydrogen evolution reaction
    Zhang, Bianli
    Xu, Hui
    Chen, Qun
    Chen, Haiqun
    He, Guangyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 922
  • [47] 3D Hierarchical Porous Mo2C for Efficient Hydrogen Evolution
    Ang, Huixiang
    Wang, Huanwen
    Li, Bing
    Zong, Yun
    Wang, Xuefeng
    Yan, Qingyu
    SMALL, 2016, 12 (21) : 2859 - 2865
  • [48] Photonic Flash Synthesis of Mo2C/Graphene Electrocatalyst for the Hydrogen Evolution Reaction
    Reynard, Danick
    Nagar, Bhawna
    Girault, Hubert
    ACS CATALYSIS, 2021, 11 (09) : 5865 - 5872
  • [49] Growth mechanism of Mo2C coatings on diamond particles in molten salt
    Zheng, Xutong
    Cao, Yejie
    Liu, Yongsheng
    He, Jiangyi
    Wang, Jing
    Zhang, Yunhai
    Dong, Ning
    SURFACES AND INTERFACES, 2023, 40
  • [50] Dual-phased Mo2C/Mo3N2/C nanosheets for efficient electrocatalytic hydrogen evolution
    Tian, Guangyan
    Yao, Bingxue
    Han, Gaofeng
    Li, Yan
    Zhang, Kefeng
    Meng, Junping
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (12) : 6581 - 6590