Irregular feature enhancer for low-dose CT denoising

被引:0
|
作者
Deng, Jiehang [1 ]
Hu, Zihang [1 ]
He, Jinwen [1 ]
Liu, Jiaxin [1 ]
Qiao, Guoqing [2 ]
Gu, Guosheng [1 ]
Weng, Shaowei [3 ]
机构
[1] Guangdong Univ Technol, Sch Comp, Guangzhou 510006, Peoples R China
[2] Gen Hosp Southern Theater Operat, Dept Diagnost Radiol, Guangzhou 510010, Peoples R China
[3] Fujian Univ Technol, Sch Elect Elect Engn & Phys, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-dose; Denoising; SASCM; Hybrid loss; GENERATIVE ADVERSARIAL NETWORK; IMAGE; CLASSIFICATION; GAN;
D O I
10.1007/s00530-024-01575-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
So far, deep learning-based networks have been widely applied in Low-Dose Computed Tomography (LDCT) image denoising. However, they usually adopt symmetric convolution to achieve regular feature extraction, but cannot effectively extract irregular features. Therefore, in this paper, an Irregular Feature Enhancer (IFE) focusing on effectively extracting irregular features is proposed by combining Symmetric-Asymmetric-Synergy Convolution Module (SASCM) with a hybrid loss module. The shape, size and aspect ratio of human tissues and lesions are irregular, whose features are difficult for symmetric square convolution to extract. Rather than simply stacking symmetric convolution layers used in traditional deep learning-based networks, the SASCM with certain combination order of symmetric and asymmetric convolutional layers is devised to extract the irregular features. To the best of our knowledge, the IFE is the first work to propose the hybrid loss combining MSE, multi-scale perception loss and gradient loss, and apply asymmetric convolution in the field of LDCT denoising. The ablation experiments demonstrate the effectiveness and feasibility of SASCM and the hybrid loss. The quantitative experimental results also show that in comparison with several related LDCT denoising methods, the proposed IFE performs the best in terms of PSNR and SSIM. Furthermore, it can be observed from the qualitative visualization that the proposed IFE can recover the best image detail structure information among the compared methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Low-Dose Dynamic CT Perfusion Denoising Without Training Data
    Sudarshan, Viswanath P.
    AthulKumar, R.
    Reddy, Pavan Kumar
    Gubbi, Jayavardhana
    Purushothaman, Balamuralidhar
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND AFFORDABLE HEALTHCARE AND AI FOR RESOURCE DIVERSE GLOBAL HEALTH (DART 2021), 2021, 12968 : 168 - 179
  • [42] MoCoDiff: Momentum context diffusion model for low-dose CT denoising
    Zhao, Shaoting
    Jiang, Ailian
    Ding, Jianguo
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [43] A multi-attention Uformer for low-dose CT image denoising
    Yan, Huimin
    Fang, Chenyun
    Qiao, Zhiwei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1429 - 1442
  • [44] Low-Dose CT Denoising Algorithm Based on Improved Cycle GAN
    Zhu Siqi
    Wang Jue
    Cai Yufang
    ACTA OPTICA SINICA, 2020, 40 (22)
  • [45] Residual Learning Based Projection Domain Denoising for Low-Dose CT
    Zhang, Y.
    MacDougall, R.
    Yu, H.
    MEDICAL PHYSICS, 2018, 45 (06) : E215 - E216
  • [46] Research progress of deep learning in low-dose CT image denoising
    Zhang, Fan
    Liu, Jingyu
    Liu, Ying
    Zhang, Xinhong
    RADIATION PROTECTION DOSIMETRY, 2023, 199 (04) : 337 - 346
  • [47] Noise Reduction in Low-dose CT with Stacked Sparse Denoising Autoencoders
    Ma, Zongqing
    Zhang, Yi
    Zhang, Weihua
    Wang, Yan
    Lin, Feng
    He, Kun
    Li, Xiaohua
    Pu, Yifei
    Zhou, Jiliu
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [48] Reconstructing and analyzing the invariances of low-dose CT image denoising networks
    Eulig, Elias
    Jaeger, Fabian
    Maier, Joscha
    Ommer, Bjoern
    Kachelriess, Marc
    MEDICAL PHYSICS, 2025, 52 (01) : 188 - 200
  • [49] Low-dose CT image denoising without high-dose reference images
    Yuan, Nimu
    Zhou, Jian
    Qi, Jinyi
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072
  • [50] Combined Low-dose Simulation and Deep Learning for CT Denoising: Application in Ultra-low-dose Chest CT
    Ahn, Chulkyun
    Heo, Changyong
    Kim, Jong Hyo
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050