Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning

被引:4
|
作者
Alsaffar, Ali Mohammed [1 ,2 ]
Nouri-Baygi, Mostafa [1 ]
Zolbanin, Hamed M. [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Comp Engn, Mashhad, Iran
[2] Imam Al Kadhum Coll IKC, Dept Comp Tech Engn, Baghdad, Iraq
[3] Univ Dayton, Sch Business Adm, Dayton, OH USA
关键词
Intrusion detection system; Machine learning; Feature selection; Stacked ensemble; DETECTION SYSTEM; MODELS; BORUTA;
D O I
10.1186/s40537-024-00994-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The frequent usage of computer networks and the Internet has made computer networks vulnerable to numerous attacks, highlighting the critical need to enhance the precision of security mechanisms. One of the most essential measures to safeguard networking resources and infrastructures is an intrusion detection system (IDS). IDSs are widely used to detect, identify, and track malicious threats. Although various machine learning algorithms have been used successfully in IDSs, they are still suffering from low prediction performances. One reason behind the low accuracy of IDSs is that existing network traffic datasets have high computational complexities that are mainly caused by redundant, incomplete, and irrelevant features. Furthermore, standalone classifiers exhibit restricted classification performance and typically fail to produce satisfactory outcomes when dealing with imbalanced, multi-category traffic data. To address these issues, we propose an efficient intrusion detection model, which is based on hybrid feature selection and stack ensemble learning. Our hybrid feature selection method, called MI-Boruta, combines mutual information (MI) as a filter method and the Boruta algorithm as a wrapper method to determine optimal features from our datasets. Then, we apply stacked ensemble learning by using random forest (RF), Catboost, and XGBoost algorithms as base learners with multilayer perceptron (MLP) as meta-learner. We test our intrusion detection model on two widely recognized benchmark datasets, namely UNSW-NB15 and CICIDS2017. We show that our proposed IDS outperforms existing IDSs in almost all performance criteria, including accuracy, recall, precision, F1-Score, false positive rate, true positive rate, and error rate.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] A Hybrid Modified Deep Learning Architecture for Intrusion Detection System with Optimal Feature Selection
    Kumar, Neeraj
    Sharma, Sanjeev
    ELECTRONICS, 2023, 12 (19)
  • [32] Machine Learning and Ensemble Learning Techniques for Intrusion Detection Systems: A Performance Analysis Based on Feature Selection Methods
    Basarslan, Muhammet Sinan
    Turgut, Zeynep
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 117 - 124
  • [33] A hybrid machine learning approach for feature selection in designing intrusion detection systems (IDS) model for distributed computing networks
    Khah, Yashar Pourardebil
    Shirvani, Mirsaeid Hosseini
    Motameni, Homayun
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [34] An Ensemble Classifier Approach on Different Feature Selection Methods for Intrusion Detection
    Vinutha, H. P.
    Poornima, B.
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, INDIA 2017, 2018, 672 : 442 - 451
  • [35] INTRUSION DETECTION BASED ON MACHINE LEARNING AND FEATURE SELECTION
    Alaoui, Souad
    El Gonnouni, Amina
    Lyhyaoui, Abdelouahid
    MENDEL 2011 - 17TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, 2011, : 199 - 206
  • [36] An optimized ensemble model with advanced feature selection for network intrusion detection
    Ahmed, Afaq
    Asim, Muhammad
    Ullah, Irshad
    Zainulabidin
    Ateya, Abdelhamied A.
    PeerJ Computer Science, 2024, 10 : 1 - 32
  • [37] A new intrusion detection method using ensemble classification and feature selection
    Pooyan Azizi doost
    Sadegh Sarhani Moghadam
    Edris Khezri
    Ali Basem
    Mohammad Trik
    Scientific Reports, 15 (1)
  • [38] An Effective Ensemble Automatic Feature Selection Method for Network Intrusion Detection
    Zhang, Yang
    Zhang, Hongpo
    Zhang, Bo
    INFORMATION, 2022, 13 (07)
  • [39] Clustering Enabled Classification using Ensemble Feature Selection for Intrusion Detection
    Salo, Fadi
    Injadat, MohammadNoor
    Moubayed, Abdallah
    Nassif, Ali Bou
    Essex, Aleksander
    2019 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2019, : 276 - 281
  • [40] An optimized adaptive ensemble model with feature selection for network intrusion detection
    Yang, Zhongjun
    Liu, Zhi
    Zong, Xuejun
    Wang, Guogang
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (04):