Personalized Composite Dosimetric Score-Based Machine Learning Model of Severe Radiation-Induced Lymphopenia Among Patients With Esophageal Cancer

被引:0
|
作者
Chu, Yan [1 ,2 ]
Zhu, Cong [1 ,3 ]
Hobbs, Brian P. [4 ]
Chen, Yiqing [1 ,5 ]
van Rossum, Peter S. N. [6 ]
Grassberger, Clemens [7 ]
Zhi, Degui [2 ]
Lin, Steven H. [8 ]
Mohan, Radhe [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr, Sch Biomed Informat, Houston, TX USA
[3] Univ Texas Hlth Sci Ctr, Sch Publ Hlth, Dept Epidemiol Human Genet & Environm Sci, Houston, TX USA
[4] Univ Texas Austin, Dell Med Sch, Dept Populat Hlth, Austin, TX USA
[5] Univ Texas Hlth Sci Ctr, Sch Publ Hlth, Dept Biostat & Data Sci, Houston, TX USA
[6] Univ Amsterdam, Med Ctr, Dept Radiat Oncol, Amsterdam, Netherlands
[7] Univ Washington, Dept Radiat Oncol, Seattle, WA USA
[8] Univ Texas MD Anderson Canc Ctr, Dept Thorac Radiat Oncol, Houston, TX USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2024年 / 120卷 / 04期
基金
美国国家卫生研究院;
关键词
RADIOTHERAPY; SURVIVAL;
D O I
10.1016/j.ijrobp.2024.05.018
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Radiation-induced lymphopenia (RIL) is common among patients undergoing radiation therapy (RT)' ' Severe RIL has been linked to adverse outcomes. The severity and risk of RIL can be predicted from baseline clinical characteristics and dosimetric parameters. However, dosimetric parameters, e.g. dose-volume (DV) indices, are highly correlated with one another and are only weakly associated with RIL. Here we introduce the novel concept of " composite dosimetric score" " (CDS) as the index that condenses the dose distribution in immune tissues of interest to study the dosimetric dependence of RIL. We derived an improved multivariate classification fi cation scheme for risk of grade 4 RIL (G4RIL), based on this novel RT dosimetric feature, for patients receiving chemo RT for esophageal cancer.
引用
收藏
页码:1172 / 1180
页数:9
相关论文
共 50 条
  • [21] Machine Learning-Based Personalized Risk Prediction Model for Mortality of Patients Undergoing Mitral Valve Surgery: The PRIME Score
    Zhou, Ning
    Ji, Zhili
    Li, Fengjuan
    Qiao, Bokang
    Lin, Rui
    Jiang, Wenxi
    Zhu, Yuexin
    Lin, Yuwei
    Zhang, Kui
    Li, Shuanglei
    You, Bin
    Gao, Pei
    Dong, Ran
    Wang, Yuan
    Du, Jie
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [22] Machine Learning Based Analysis of Heart and Cardiac Substructures for Radiation-Induced Cardiac Toxicity From Breast Cancer Radiotherapy
    Moon, J. Y.
    Chang, J. S.
    Chung, S. Y.
    Park, R. H.
    Baek, J. G.
    Kim, J. S.
    Oh, J.
    Kim, H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E224 - E225
  • [23] Dosimetric factors predicting severe radiation-induced bowel complications in patients with cervical cancer: combined effect of external parametrial dose and cumulative rectal dose
    Huang, EY
    Wang, CJ
    Hsu, HC
    Lin, H
    Chen, HC
    Sun, LM
    GYNECOLOGIC ONCOLOGY, 2004, 95 (01) : 101 - 108
  • [24] Predicting severe radiation-induced oral mucositis in head and neck cancer patients using integrated baseline CT radiomic, dosimetry, and clinical features: A machine learning approach
    Agheli, Razieh
    Siavashpour, Zahra
    Reiazi, Reza
    Azghandi, Samira
    Cheraghi, Susan
    Paydar, Reza
    HELIYON, 2024, 10 (03)
  • [25] Dosimetric Analysis of Radiation Treatment Plans Based on a Deep Learning Auto Contouring Model for Patients with Localized Prostate Cancer
    Boyd, G. H.
    Nguyen, T.
    Efstathiou, J. A.
    Kamran, S. C.
    Zietman, A. L.
    Miyamoto, D. T.
    Wang, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E116 - E117
  • [26] A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study
    Liu, Yang
    Gao, Kun
    Deng, Hongbin
    Ling, Tong
    Lin, Jiajia
    Yu, Xianqiang
    Bo, Xiangwei
    Zhou, Jing
    Gao, Lin
    Wang, Peng
    Hu, Jiajun
    Zhang, Jian
    Tong, Zhihui
    Liu, Yuxiu
    Shi, Yinghuan
    Ke, Lu
    Gao, Yang
    Li, Weiqin
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 163
  • [27] Machine learning-based radiomics prognostic model for patients with proximal esophageal cancer after definitive chemoradiotherapy
    Li, Linrui
    Qin, Zhihui
    Bo, Juan
    Hu, Jiaru
    Zhang, Yu
    Qian, Liting
    Dong, Jiangning
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [28] Predicting Chemoradiotherapy Induced Cardiotoxicity in Breast Cancer Patients Using Machine Learning Based Clinical, Imaging and Dosimetric Radiomics Features
    Tavakoli, M.
    Talebi, A.
    Bitarafan-Rajabi, A.
    Alizadeh-asl, A.
    Seilani, P.
    Khajetash, B.
    Hajianfar, G.
    Ghavidel, B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E591 - E591
  • [29] A pretreatment multiparametric MRI-based radiomics-clinical machine learning model for predicting radiation-induced temporal lobe injury in patients with nasopharyngeal carcinoma
    Wang, Li
    Qiu, Ting
    Zhou, Jiawei
    Zhu, Yinsu
    Sun, Baozhou
    Yang, Guanyu
    Huang, Shengfu
    Wu, Lirong
    He, Xia
    HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2024, 46 (09): : 2132 - 2144
  • [30] Association of TGF-β1 and XPD polymorphisms with severe acute radiation-induced esophageal toxicity in locally advanced lung cancer patients treated with radiotherapy
    Zhang, Li
    Yang, Ming
    Bi, Nan
    Ji, Wei
    Wu, Chen
    Tan, Wen
    Zhao, Lujun
    Yu, Dianke
    Lin, Dongxin
    Wang, Luhua
    RADIOTHERAPY AND ONCOLOGY, 2010, 97 (01) : 19 - 25