Semantic Shape and Trajectory Reconstruction for Monocular Cooperative 3D Object Detection

被引:0
|
作者
Cserni, Marton [1 ]
Rovid, Andras [1 ]
机构
[1] Budapest Univ Technol & Econ BME, Fac Transportat Engn & Vehicle Engn, Dept Automot Technol, H-1111 Budapest, Hungary
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Semantics; Three-dimensional displays; Image reconstruction; Solid modeling; Trajectory; Pose estimation; Accuracy; Cameras; Computational modeling; Autonomous driving; shape aware monocular 3D object detection; trajectory reconstruction; semantic keypoints; cooperative perception;
D O I
10.1109/ACCESS.2024.3484672
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently the state-of-the-art monocular 3D object detectors use machine learning to estimate the 6DOF pose and shape of vehicles. This requires large amounts of precisely annotated 3D data for the training process and significant computing power for inference. Alternatively, there exist methods, which attempt to reconstruct target vehicle shapes and scales using projective geometry and classically detected feature points such as SURF and ORB. These methods use specific camera motion or geometrical constraints which cannot always be assumed. The resulting model is an unstructured point cloud which contains no semantic information, making its utility inconvenient in a distributed perception system. In this study, the applicability of semantic keypoints for vehicle shape and trajectory estimation is explored. A novel method is presented, which is capable reconstructing the semantic shape and trajectory of the target vehicle from a sequence of images with state-of-the art accuracy. The resulting semantic vertex model is then used for monocular, single frame 6DOF pose estimation with high accuracy. Building on this, a cooperative perception framework is also introduced. The algorithm is tested in both in-vehicle and infrastructure mounted mono-camera sensor setups. In addition to achieving state of the art depth accuracy in vehicle trajectory reconstruction on the Argoverse dataset, our method outperforms the state of the art shape-aware deep learning method in pose estimation in a cooperative perception scenario both in simulation and in real-world experiments.
引用
收藏
页码:167153 / 167167
页数:15
相关论文
共 50 条
  • [21] AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection
    Liu, Zongdai
    Zhou, Dingfu
    Lu, Feixiang
    Fang, Jin
    Zhang, Liangjun
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15621 - 15630
  • [22] Learning Auxiliary Monocular Contexts Helps Monocular 3D Object Detection
    Liu, Xianpeng
    Xue, Nan
    Wu, Tianfu
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1810 - 1818
  • [23] Joint Semantic Segmentation and 3D Reconstruction from Monocular Video
    Kundu, Abhijit
    Li, Yin
    Dellaert, Frank
    Li, Fuxin
    Rehg, James M.
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 703 - 718
  • [24] Monocular 3D Object Detection with Bounding Box Denoising in 3D by Perceiver
    Liu, Xianpeng
    Zheng, Ce
    Cheng, Kelvin
    Xue, Nan
    Qi, Guo-Jun
    Wu, Tianfu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6413 - 6423
  • [25] Progressive Coordinate Transforms for Monocular 3D Object Detection
    Wang, Li
    Zhang, Li
    Zhu, Yi
    Zhang, Zhi
    He, Tong
    Li, Mu
    Xue, Xiangyang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] Exploring Geometric Consistency for Monocular 3D Object Detection
    Lian, Qing
    Ye, Botao
    Xu, Ruijia
    Yao, Weilong
    Zhang, Tong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1675 - 1684
  • [27] MonoSG: Monocular 3D Object Detection With Stereo Guidance
    Fan, Zhiwei
    Xu, Chao
    Chu, Minghang
    Huang, Yuling
    Ma, Yaoyao
    Wang, Jing
    Xu, Yishen
    Wu, Di
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 3604 - 3611
  • [28] Divisional 3D shape reconstruction of object image
    Xu, D
    Xia, LZ
    Yang, SZ
    VISUALIZATION AND OPTIMIZATION TECHNIQUES, 2001, 4553 : 56 - 60
  • [29] Monocular 3D Object Detection With Motion Feature Distillation
    Hu, Henan
    Li, Muyu
    Zhu, Ming
    Gao, Wen
    Liu, Peiyu
    Chan, Kwok-Leung
    IEEE ACCESS, 2023, 11 : 82933 - 82945
  • [30] Monocular Object Detection Using 3D Geometric Primitives
    Carr, Peter
    Sheikh, Yaser
    Matthews, Iain
    COMPUTER VISION - ECCV 2012, PT I, 2012, 7572 : 864 - 878