Machine learning-enabled traveltime inversion based on the horizontal source-location perturbation

被引:0
|
作者
Yildirim I.E. [1 ]
Alkhalifah T. [2 ]
Yildirim E.U. [1 ]
机构
[1] Middle East Technical University, Institute of Applied Mathematics, Üniversiteler Mahallesi, Dumlupinar Bulvari, Çankaya, Ankara
[2] King Abdullah University of Science and Technology, Physical Sciences and Engineering Division, Thuwal
来源
Geophysics | 2022年 / 87卷 / 01期
关键词
inversion; machine learning; near surface; traveltime;
D O I
10.1190/geo2020-0735.1
中图分类号
学科分类号
摘要
Gradient-based traveltime tomography, which aims to minimize the difference between modeled and observed first-arrival times, is a highly nonlinear optimization problem. Stabilization of this inverse problem often requires using regularization. Although regularization helps avoid local minima solutions, it might cause low-resolution tomograms because of its inherent smoothing property. However, although conventional ray-based tomography can be robust in terms of the uniqueness of the solution, it suffers from the limitations inherent in ray tracing, which limits its use in complex media. To mitigate the aforementioned drawbacks of gradient and ray-based tomography, we have approached the problem in a novel way leveraging data-driven inversion techniques based on training deep convolutional neural networks (DCNN). Because DCNN often face challenges in detecting high-level features from the relatively smooth traveltime data, we use this type of network to map horizontal changes in observed first-arrival traveltimes caused by a source shift to lateral velocity variations. The relationship between them is explained by a linearized eikonal equation. Construction of the velocity models from this predicted lateral variation requires information from, for example, a vertical well log in the area. This vertical profile is then used to build a tomogram from the output of the network. The synthetic and field data results verify that the suggested approach reliably estimates the velocity models. Because of the limited depth penetration of first-arrival traveltimes, the method is particularly favorable for near-surface applications. © 2022 Society of Exploration Geophysicists.
引用
收藏
页码:U1 / U8
页数:7
相关论文
共 50 条
  • [21] Machine Learning-Enabled Power Scheduling in IoT-Based Smart Cities
    Awan, Nabeela
    Khan, Salman
    Rahmani, Mohammad Khalid Imam
    Tahir, Muhammad
    Alam, Nur
    Alturki, Ryan
    Ullah, Ihsan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 2447 - 2462
  • [22] A Review and Tutorial on Machine Learning-Enabled Radar-Based Biomedical Monitoring
    Krauss, Daniel
    Engel, Lukas
    Ott, Tabea
    Braeunig, Johanna
    Richer, Robert
    Gambietz, Markus
    Albrecht, Nils
    Hille, Eva M.
    Ullmann, Ingrid
    Braun, Matthias
    Dabrock, Peter
    Koelpin, Alexander
    Koelewijn, Anne D.
    Eskofier, Bjoern M.
    Vossiek, Martin
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2024, 5 : 680 - 699
  • [23] A source-location privacy protocol in WSN based on locational angle
    Wang Wei-Ping
    Chen Liang
    Wang Jian-Xin
    2008 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, PROCEEDINGS, VOLS 1-13, 2008, : 1630 - 1634
  • [24] Machine learning-enabled autonomous operation for atomic force microscopes
    Kang, Seongseok
    Park, Junhong
    Lee, Manhee
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (12):
  • [25] Machine Learning-enabled Scalable Performance Prediction of Scientific Codes
    Chennupati, Gopinath
    Santhi, Nandakishore
    Romero, Phill
    Eidenbenz, Stephan
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2021, 31 (02):
  • [26] Machine learning-enabled calibration of river routing model parameters
    Zhao, Ying
    Chadha, Mayank
    Olsen, Nicholas
    Yeates, Elissa
    Turner, Josh
    Gugaratshan, Guga
    Qian, Guofeng
    Todd, Michael D.
    Hu, Zhen
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (05) : 1799 - 1821
  • [27] Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes
    Liu, Yonglan
    Zhang, Dong
    Tang, Yijing
    Zhang, Yanxian
    Gong, Xiong
    Xie, Shaowen
    Zheng, Jie
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [28] Machine Learning-Enabled Adaptation of Information Fusion Software Systems
    Fry, Gerald
    Samawi, Tameem
    Lu, Kenny
    Pfeffer, Avi
    Wu, Curt
    Marotta, Steve
    Reposa, Mike
    Chong, Stephen
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [29] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [30] Weld quality monitoring via machine learning-enabled approaches
    Raj, Aditya
    Chadha, Utkarsh
    Chadha, Arisha
    Mahadevan, R. Rishikesh
    Sai, Buddhi Rohan
    Chaudhary, Devanshi
    Selvaraj, Senthil Kumaran
    Lokeshkumar, R.
    Das, Sreethul
    Karthikeyan, B.
    Nagalakshmi, R.
    Chandramohan, Vishjit
    Hadidi, Haitham
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023,