A Scalable and Generalizable Pathloss Map Prediction

被引:0
|
作者
Lee, Ju-Hyung [1 ,2 ]
Molisch, Andreas F. [1 ]
机构
[1] Univ Southern Calif USC, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
[2] Nokia, Sunnyvale, CA 94085 USA
关键词
Predictive models; Accuracy; Wireless communication; Data models; Computational modeling; Training; Ray tracing; Pathloss map prediction; ray tracing; machine learning; computer vision; transfer learning; network optimization; digital twin; 6G; PROPAGATION;
D O I
10.1109/TWC.2024.3457431
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Large-scale channel prediction, i.e., estimation of the pathloss from geographical/morphological/building maps, is an essential component of wireless network planning. Ray tracing (RT)-based methods have been widely used for many years, but they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in B5G/6G systems. In this paper, we propose a data-driven, model-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a supervised learning approach: it is trained on a limited amount of RT data and map data. Once trained, PMNet can predict pathloss over location with high accuracy (an RMSE level of 10(-2)) in a few milliseconds. We further extend PMNet by employing transfer learning (TL). TL allows PMNet to learn a new network scenario quickly (x 5.6 faster training) and efficiently (using x 4.5 less data) by transferring knowledge from a pre-trained model, while retaining accuracy. Our results demonstrate that PMNet is a scalable and generalizable ML-based PMP method, showing its potential to be used in several network optimization applications.
引用
收藏
页码:17793 / 17806
页数:14
相关论文
共 50 条
  • [11] WeSep: A Scalable and Flexible Toolkit Towards Generalizable Target Speaker Extraction
    Wang, Shuai
    Zhang, Ke
    Lin, Shaoxiong
    Li, Junjie
    Wang, Xuefei
    Ge, Meng
    Yu, Jianwei
    Qian, Yanmin
    Li, Haizhou
    INTERSPEECH 2024, 2024, : 4273 - 4277
  • [12] A generalizable saliency map-based interpretation of model outcome
    Thakur, Shailja
    Fischmeister, Sebastian
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4099 - +
  • [13] Generalizable approaches for genomic prediction of metabolites in plants
    Brzozowski, Lauren J.
    Campbell, Malachy T.
    Hu, Haixiao
    Caffe, Melanie
    Gutierrez, Lucia
    Smith, Kevin P.
    Sorrells, Mark E.
    Gore, Michael A.
    Jannink, Jean-Luc
    PLANT GENOME, 2022, 15 (02):
  • [14] Generalizable Intention Prediction of Human Drivers at Intersections
    Phillips, Derek J.
    Wheeler, Tim A.
    Kochenderfer, Mykel J.
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 1665 - 1670
  • [15] Generalizable inductive relation prediction with causal subgraph
    Yu, Han
    Liu, Ziniu
    Tu, Hongkui
    Chen, Kai
    Li, Aiping
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (03):
  • [16] SemVecNet: Generalizable Vector Map Generation for Arbitrary Sensor Configurations
    Ranganatha, Narayanan Elavathur
    Zhang, Hengyuan
    Venkatramani, Shashank
    Liao, Jing-Yan
    Christensen, Henrik I.
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 2820 - 2827
  • [17] Map API - Scalable Decentralized Map Building for Robots
    Cieslewski, Titus
    Lynen, Simon
    Dymczyk, Marcin
    Magnenat, Stephane
    Siegwart, Roland
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 6241 - 6247
  • [18] UniFolding: Towards Sample-efficient, Scalable, and Generalizable Robotic Garment Folding
    Xue, Han
    Li, Yutong
    Xu, Wenqiang
    Li, Huanyu
    Zheng, Dongzhe
    Lu, Cewu
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [19] Generalizable and Interpretable Deep Learning for Network Congestion Prediction
    Poularakis, Konstantinos
    Qin, Qiaofeng
    Le, Franck
    Kompella, Sastry
    Tassiulas, Leandros
    2021 IEEE 29TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP 2021), 2021,
  • [20] NeuPh: scalable and generalizable neural phase retrieval with local conditional neural fields
    Wang, Hao
    Zhu, Jiabei
    Li, Yunzhe
    Yang, Qianwan
    Tian, Lei
    ADVANCED PHOTONICS NEXUS, 2024, 3 (05):