Low-carbon optimal dispatch of park integrated energy system considering coordinated ammonia production from multiple hydrogen energy

被引:0
|
作者
Zhang, Wei [1 ,2 ]
Liu, Jiang [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
关键词
Multi-hydrogen energy coordination; Ammonia-doped combustion; Laddered carbon trading; Inertia characteristics; Low-carbon optimal scheduling; ELECTRICITY;
D O I
10.1016/j.renene.2024.121712
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The utilization of ammonia energy has garnered considerable global attention as a viable approach to alleviate pressure on energy supply within park integrated energy systems (PIES) and enhance energy efficiency. However, the introduction of ammonia production requires the system to increase large amounts of hydrogen, diversifying the sources of hydrogen and challenging the coordinated operation of PIES. In this paper, the inertia characteristics of the gas and thermal energy delivery process are utilized to increase the flexibility of the PIES operation. A technological framework for coordinated ammonia production from multi-hydrogen energy in PIES under consideration of having inertia characteristics and a low-carbon operation strategy for ammonia-doped combustion in thermal generation is constructed. Limiting carbon emissions through a stepped carbon trading mechanism in this strategy. In addition, while addressing the ammonia-doped requirement for thermal generation combustion, and by flexibly setting the ammonia doping ratio of thermal generation combustion, the operation of PIES under different ammonia-doped ratios has been analyzed in detail. The results demonstrate that the proposed model enhances the utilization of renewable energy, leading to reduction in total economic costs by 4.52 % and total carbon emissions by 24.81 %. This makes the operation of PIES more economical, lowcarbon, and flexible.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Optimal Dispatch of Integrated Energy System with Hydrogen Considering Demand Response and Cascade Energy Utilization
    Gao Y.
    Wang Q.
    Chen Y.
    Ye W.
    Liu G.
    Yin X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (04): : 51 - 59
  • [42] Low-carbon economic dispatch of integrated electricity and natural gas energy system considering carbon capture device
    Liu, Xinghua
    Li, Xiang
    Tian, Jiaqiang
    Cao, Hui
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2021,
  • [43] Low-Carbon Economic Dispatch Method for Integrated Energy System Considering Seasonal Carbon Flow Dynamic Balance
    Yan, Ning
    Ma, Guangchao
    Li, Xiangjun
    Guerrero, Josep M. M.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2023, 14 (01) : 576 - 586
  • [44] Low-carbon Scheduling of Integrated Energy System in Iron & Steel Industrial Park Considering Low-carbon Techniques and Process Control
    Gan L.
    Yang T.
    Chen X.
    Shen J.
    Wang B.
    Yu K.
    Dianwang Jishu/Power System Technology, 2023, 47 (08): : 3099 - 3110
  • [45] Low carbon economic dispatch of integrated energy systems considering utilization of hydrogen and oxygen energy
    Wu, Min
    Wu, Zhuo
    Shi, Zhenglu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 158
  • [46] LOW-CARBON ECONOMIC DISPATCH OPTIMIZATION OF INTEGRATED ENERGY SYSTEM CONSIDERING FORWARD-LOOKING RISKS
    Zhu X.
    Jiang Q.
    Zhong Y.
    Yao X.
    Liu M.
    Luo H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 113 - 121
  • [47] Low-Carbon Economic Optimization of Integrated Energy System Considering Refined Utilization of Hydrogen Energy and Generalized Energy Storage
    Liu, Zifa
    Li, Chengchen
    ENERGIES, 2023, 16 (15)
  • [48] Low-Carbon Optimal Operation Strategy of Integrated Energy System Considering Generalized Energy Storage and LCA Carbon Emission
    Sun Y.
    Gu J.
    Zheng S.
    Li X.
    Lu C.
    Liu W.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2024, 58 (05): : 647 - 658
  • [49] Low-Carbon Economic Dispatch of Integrated Energy Systems Considering Extended Carbon Emission Flow
    Zhang, Yumin
    Sun, Pengkai
    Ji, Xingquan
    Wen, Fushuan
    Yang, Ming
    Ye, Pingfeng
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2024, 12 (06) : 1798 - 1809
  • [50] Low-carbon Economic Dispatch of Integrated Energy Systems Considering Extended Carbon Emission Flow
    Yumin Zhang
    Pengkai Sun
    Xingquan Ji
    Fushuan Wen
    Ming Yang
    Pingfeng Ye
    Journal of Modern Power Systems and Clean Energy, 2024, 12 (06) : 1798 - 1809