Bi-Branching Feature Interaction Representation Learning for Multivariate Time Series

被引:0
|
作者
Wang, Wenyan [1 ]
Zuo, Enguang [2 ]
Wang, Ruiting [1 ]
Zhong, Jie [1 ]
Chen, Chen [1 ]
Chen, Cheng [1 ]
Lv, Xiaoyi [1 ]
机构
[1] Xinjiang Univ, Coll Software, Urumqi 830046, Xinjiang, Peoples R China
[2] Xinjiang Univ, Coll Intelligent Sci & Technol Future Technol, Urumqi 830046, Xinjiang, Peoples R China
关键词
Multivariate time series; Representation learning; Bi-Branching; Feature interaction;
D O I
10.1016/j.asoc.2024.112383
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Representational learning of time series plays a crucial role in various fields. However, existing time-series models do not perform well in representation learning. These models usually focus only on the relationship between variables at the same timestamp or only consider the change of individual variables in time, while failing to effectively integrate the two, which limits their ability to capture complex time dependencies and multivariate interactions. We propose a Bi-Branching F eature I nteraction Representation Learning for Multivariate Time Series (Bi-FI) to address these issues. Specifically, we elaborated a frequency domain analysis branch to address the complex associations between variables that are difficult to visualize in the time domain. In addition, to eliminate the time lag effect, another branch employs the mechanism of variable tokenization for attention to learning intra-variable representations. Ultimately, we interactively fuse the features learned from the two branches to obtain a more comprehensive time series representation. Bi-FI performs well in three time series analysis tasks: long sequence prediction, classification, and anomaly detection. Our code and dataset will be available at https://github.com/wwy8/Bi_FI.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] SMATE: Semi-Supervised Spatio-Temporal Representation Learning on Multivariate Time Series
    Zuo, Jingwei
    Zeitouni, Karine
    Taher, Yehia
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1565 - 1570
  • [32] Multiscale spatial-temporal transformer with consistency representation learning for multivariate time series classification
    Wu, Wei
    Qiu, Feiyue
    Wang, Liping
    Liu, Yanxiu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (27):
  • [33] Topological machine learning for multivariate time series
    Wu, Chengyuan
    Hargreaves, Carol Anne
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2022, 34 (02) : 311 - 326
  • [34] Learning comprehensible descriptions of multivariate time series
    Kadous, MW
    MACHINE LEARNING, PROCEEDINGS, 1999, : 454 - 463
  • [35] Univariate and Multivariate Time Series Manifold Learning
    O'Reilly, Colin
    Moessner, Klaus
    Nati, Michele
    KNOWLEDGE-BASED SYSTEMS, 2017, 133 : 1 - 16
  • [36] Time Series Representation Learning: A Survey on Deep Learning Techniques for Time Series Forecasting
    Schmieg, Tobias
    Lanquillon, Carsten
    ARTIFICIAL INTELLIGENCE IN HCI, PT I, AI-HCI 2024, 2024, 14734 : 422 - 435
  • [37] Multivariate Time Series Representation and Similarity Search Using PCA
    Kane, Aminata
    Shiri, Nematollaah
    ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS, ICDM 2017, 2017, 10357 : 122 - 136
  • [38] Reservoir Computing Approaches for Representation and Classification of Multivariate Time Series
    Bianchi, Filippo Maria
    Scardapane, Simone
    Lokse, Sigurd
    Jenssen, Robert
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 2169 - 2179
  • [40] Time-Series Representation Feature Refinement with a Learnable Masking Augmentation Framework in Contrastive Learning
    Lee, Junyeop
    Ham, Insung
    Kim, Yongmin
    Ko, Hanseok
    SENSORS, 2024, 24 (24)