LoMAE: Simple Streamlined Low-Level Masked Autoencoders for Robust, Generalized, and Interpretable Low-Dose CT Denoising

被引:1
|
作者
Wang, Dayang [1 ]
Han, Shuo [1 ]
Xu, Yongshun [1 ]
Wu, Zhan [2 ,3 ]
Zhou, Li [1 ]
Morovati, Bahareh [1 ]
Yu, Hengyong [1 ]
机构
[1] Univ Massachusetts Lowell, Dept Elect & Comp Engn, Lowell, MA 01854 USA
[2] Southeast Univ, Lab Image Sci & Technol, Nanjing 210096, Peoples R China
[3] Southeast Univ, Key Lab Comp Network & Informat Integrat, Minist Educ, Nanjing 210096, Peoples R China
关键词
Noise reduction; Noise; Transformers; Computed tomography; Decoding; Robustness; Data models; Low-dose CT; masked autoencoder; self-pretraining; transformer; RECONSTRUCTION; ALGORITHMS; NETWORK;
D O I
10.1109/JBHI.2024.3454979
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-dose computed tomography (LDCT) offers reduced X-ray radiation exposure but at the cost of compromised image quality, characterized by increased noise and artifacts. Recently, transformer models emerged as a promising avenue to enhance LDCT image quality. However, the success of such models relies on a large amount of paired noisy and clean images, which are often scarce in clinical settings. In computer vision and natural language processing, masked autoencoders (MAE) have been recognized as a powerful self-pretraining method for transformers, due to their exceptional capability to extract representative features. However, the original pretraining and fine-tuning design fails to work in low-level vision tasks like denoising. In response to this challenge, we redesign the classical encoder-decoder learning model and facilitate a simple yet effective streamlined low-level vision MAE, referred to as LoMAE, tailored to address the LDCT denoising problem. Moreover, we introduce an MAE-GradCAM method to shed light on the latent learning mechanisms of the MAE/LoMAE. Additionally, we explore the LoMAE's robustness and generability across a variety of noise levels. Experimental findings show that the proposed LoMAE enhances the denoising capabilities of the transformer and substantially reduce their dependency on high-quality, ground-truth data. It also demonstrates remarkable robustness and generalizability over a spectrum of noise levels. In summary, the proposed LoMAE provides promising solutions to the major issues in LDCT including interpretability, ground truth data dependency, and model robustness/generalizability.
引用
收藏
页码:6815 / 6827
页数:13
相关论文
共 50 条
  • [11] Irregular feature enhancer for low-dose CT denoising
    Deng, Jiehang
    Hu, Zihang
    He, Jinwen
    Liu, Jiaxin
    Qiao, Guoqing
    Gu, Guosheng
    Weng, Shaowei
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [12] RHLNet: Robust Hybrid Loss-Based Network for Low-Dose CT Image Denoising
    Saidulu, Naragoni
    Muduli, Priya Ranjan
    Dasgupta, Anirban
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [13] Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis
    Patwari, Mayank
    Gutjahr, Ralf
    Marcus, Roy
    Thali, Yannick
    Calvarons, Adria F.
    Raupach, Rainer
    Maier, Andreas
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (19):
  • [14] FRAMELET DENOISING FOR LOW-DOSE CT USING DEEP LEARNING
    Kang, Eunhee
    Ye, Jong Chul
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 311 - 314
  • [15] LOW-DOSE CT DENOISING VIA NEURAL ARCHITECTURE SEARCH
    Lu, Zexin
    Xia, Wenjun
    Huang, Yongqiang
    Hou, Mingzheng
    Chen, Hu
    Shan, Hongming
    Zhang, Yi
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [16] Denoising on Low-Dose CT Image Using Deep CNN
    Sadamatsu, Yuta
    Murakami, Seiichi
    Li, Guangxu
    Kamiya, Tohru
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 546 - 549
  • [17] A Spatiotemporal Denoising Method for Low-Dose Cardiac CT Images
    Yang, J.
    Zhou, S.
    Huang, J.
    Yu, L.
    Jin, M.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [18] Task-Oriented Low-Dose CT Image Denoising
    Zhang, Jiajin
    Chao, Hanqing
    Xu, Xuanang
    Niu, Chuang
    Wang, Ge
    Yan, Pingkun
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VI, 2021, 12906 : 441 - 450
  • [19] Segmentation as Domain Knowledge in GAN for Low-dose CT Denoising
    Yin, Zhi
    Zheng, Zong
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2022, 66 (04)
  • [20] Low-dose CT denoising with a high-level feature refinement and dynamic convolution network
    Yang, Sihan
    Pu, Qiang
    Lei, Chunting
    Zhang, Qiao
    Jeon, Seunggil
    Yang, Xiaomin
    MEDICAL PHYSICS, 2023, 50 (06) : 3597 - 3611