Accurate computations with some Catalan-Stieltjes matrices

被引:0
|
作者
Niu, Benxia [1 ]
Zheng, Bing [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
美国国家科学基金会;
关键词
Bidiagonal factorization; High relative accuracy; Catalan-Stieltjes matrices; Totally positive matrix; TOTAL POSITIVITY; EIGENVALUES; ALGORITHMS;
D O I
10.1007/s10092-024-00603-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Catalan-Stieltjes matrices and their corresponding Catalan-like numbers are very important in combinatorics. In this paper, we give a sufficient condition for the Catalan-Stieltjes matrix to be triangular strictly totally positive (Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}STP), that is, all its minors are positive except those which are zero due to the triangular structure. On this basis, we show that it is possible to compute the bidiagonal factorization of a class of Catalan-Stieltjes matrices with high relative accuracy (HRA). We also demonstrate that this class of matrices includes many well-known combinatorial triangles, such as the Catalan triangle of Aigner and the Bell triangle. Moreover, we construct an accurate algorithm to compute the bidiagonal factorization of some Catalan-Stieltjes matrices. The algorithm guarantees HRA for several linear algebraic computations associated with these matrices, like computing their singular values, their inverses, as well as the solutions of some linear systems. We show the accuracy and effectiveness of the proposed algorithm through numerical experiments.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases
    E. Mainar
    J. M. Peña
    B. Rubio
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [32] Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases
    Mainar, E.
    Pena, J. M.
    Rubio, B.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [33] ACCURATE COMPUTATIONS WITH COLLOCATION MATRICES OF q-BERNSTEIN POLYNOMIALS
    Delgado, Jorge
    Pena, J. M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) : 880 - 893
  • [34] Accurate determinants of some classes of matrices
    Orera, H.
    Pena, J. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 1 - 14
  • [35] Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices
    Dopico, Froilan M.
    Koev, Plamen
    NUMERISCHE MATHEMATIK, 2011, 119 (02) : 337 - 371
  • [36] Accurate Computations with Generalized Pascal k-Eliminated Functional Matrices
    Delgado, Jorge
    Orera, Hector
    Pena, Juan Manuel
    MATHEMATICS, 2025, 13 (02)
  • [37] Accurate computations for eigenvalues of products of Cauchy-polynomial-Vandermonde matrices
    Yang, Zhao
    Huang, Rong
    Zhu, Wei
    NUMERICAL ALGORITHMS, 2020, 85 (01) : 329 - 351
  • [38] Accurate and fast computations with positive extended Schoenmakers-Coffey matrices
    Delgado, Jorge
    Pena, Guillermo
    Manuel Pena, Juan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (06) : 1023 - 1031
  • [39] On the total positivity of q-Bernstein mass matrices and their accurate computations
    Mainar, E.
    Pena, J. M.
    Rubio, B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [40] Accurate computations for eigenvalues of products of Cauchy-polynomial-Vandermonde matrices
    Zhao Yang
    Rong Huang
    Wei Zhu
    Numerical Algorithms, 2020, 85 : 329 - 351