Copper nanoclusters: Selective CO2 to methane conversion beyond 1 A/cm2

被引:1
|
作者
Salehi, Mandi [1 ]
Al-Mahayni, Hasan [1 ]
Farzi, Amirhossein [1 ]
McKee, Morgan [3 ,4 ]
Kaviani, Sepideh [2 ]
Pajootan, Elmira [1 ]
Lin, Roger [1 ]
Kornienko, Nikolay [3 ,4 ]
Seifitokaldani, Ali [1 ]
机构
[1] McGill Univ, Dept Chem Engn, Montreal, PQ, Canada
[2] McGill Univ, Dept Chem, Montreal, PQ, Canada
[3] Univ Montreal, Dept Chem, Montreal, PQ, Canada
[4] Univ Bonn, Inst Inorgan Chem, Gerhard Domagk Str 1, D-53121 Bonn, Germany
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Electrocatalysis; CO2 Reduction Reaction; Methane; Copper Nanocluster; Density Functional Theory Computation; PROJECTOR AUGMENTED-WAVE; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; REACTION-MECHANISMS; ELECTROREDUCTION; EFFICIENT; ETHYLENE; CATALYST; SYSTEMS;
D O I
10.1016/j.apcatb.2024.124061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dioxide offers a unique opportunity as a feedstock for energy production through electrocatalysis. Methane production holds promise for its widespread applications and market demand. However, commercial viability faces challenges of low selectivity, current density, and high applied potential. Efforts to improve methane selectivity while suppressing multi-carbon products, e.g., ethylene, often involve lower alkalinity electrolytes. However, it reduces current density due to increased ohmic resistance without significant gains in the reaction yield. This study utilizes quantum mechanics computations to design a nano-cluster copper catalyst that redirects the reaction pathway from ethylene towards methane, even under alkaline conditions. We achieved a Faradaic efficiency (FE) of 85 %, a current density of 1.5 A/cm(2), and stability of over 10 hours solely by controlling particle size in copper catalysts. This work paves the way to overcoming current limitations in electrocatalytic methane production and holds broader implications for advancing sustainable CO2 utilization in energy systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Selective Conversion of CO2 into Propene and Butene
    Wang, Sen
    Zhang, Li
    Zhang, Wenyu
    Wang, Pengfei
    Qin, Zhangfeng
    Yan, Wenjun
    Dong, Mei
    Li, Junfen
    Wang, Jianguo
    He, Lin
    Olsbye, Unni
    Fan, Weibin
    CHEM, 2020, 6 (12): : 3344 - 3363
  • [12] Selective CO2 Conversion into Fuels on Nanochannels
    Delgado, Dario
    CHEMPHYSCHEM, 2019, 20 (15) : 1908 - 1911
  • [13] Combining CO2 capture and catalytic conversion to methane
    Bravo, Paulina Melo
    Debecker, Damien P.
    WASTE DISPOSAL & SUSTAINABLE ENERGY, 2019, 1 (01) : 53 - 65
  • [14] Combining CO2 capture and catalytic conversion to methane
    Paulina Melo Bravo
    Damien P. Debecker
    Waste Disposal & Sustainable Energy, 2019, 1 : 53 - 65
  • [15] CO2 utilisation by photocatalytic conversion to methane and methanol
    Uner, Deniz
    Oymak, M. Mert
    Ipek, Bahar
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2011, 3 (1-2) : 142 - 162
  • [16] Selective conversion of CO2 and H2 into aromatics
    Ni, Youming
    Chen, Zhiyang
    Fu, Yi
    Liu, Yong
    Zhu, Wenliang
    Liu, Zhongmin
    NATURE COMMUNICATIONS, 2018, 9
  • [17] Selective conversion of CO2 and H2 into aromatics
    Youming Ni
    Zhiyang Chen
    Yi Fu
    Yong Liu
    Wenliang Zhu
    Zhongmin Liu
    Nature Communications, 9
  • [18] Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol
    Bing An
    Zhe Li
    Yang Song
    Jingzheng Zhang
    Lingzhen Zeng
    Cheng Wang
    Wenbin Lin
    Nature Catalysis, 2019, 2 : 709 - 717
  • [19] Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters
    Yang, Hui
    Huang, Yang
    Deng, Jun
    Wu, Yunling
    Han, Na
    Zha, Chenyang
    Li, Leigang
    Li, Yanguang
    JOURNAL OF ENERGY CHEMISTRY, 2019, 37 : 93 - 96
  • [20] Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters
    Hui Yang
    Yang Huang
    Jun Deng
    Yunling Wu
    Na Han
    Chenyang Zha
    Leigang Li
    Yanguang Li
    Journal of Energy Chemistry, 2019, 37 (10) : 93 - 96