Copper nanoclusters: Selective CO2 to methane conversion beyond 1 A/cm2

被引:1
|
作者
Salehi, Mandi [1 ]
Al-Mahayni, Hasan [1 ]
Farzi, Amirhossein [1 ]
McKee, Morgan [3 ,4 ]
Kaviani, Sepideh [2 ]
Pajootan, Elmira [1 ]
Lin, Roger [1 ]
Kornienko, Nikolay [3 ,4 ]
Seifitokaldani, Ali [1 ]
机构
[1] McGill Univ, Dept Chem Engn, Montreal, PQ, Canada
[2] McGill Univ, Dept Chem, Montreal, PQ, Canada
[3] Univ Montreal, Dept Chem, Montreal, PQ, Canada
[4] Univ Bonn, Inst Inorgan Chem, Gerhard Domagk Str 1, D-53121 Bonn, Germany
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Electrocatalysis; CO2 Reduction Reaction; Methane; Copper Nanocluster; Density Functional Theory Computation; PROJECTOR AUGMENTED-WAVE; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; REACTION-MECHANISMS; ELECTROREDUCTION; EFFICIENT; ETHYLENE; CATALYST; SYSTEMS;
D O I
10.1016/j.apcatb.2024.124061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dioxide offers a unique opportunity as a feedstock for energy production through electrocatalysis. Methane production holds promise for its widespread applications and market demand. However, commercial viability faces challenges of low selectivity, current density, and high applied potential. Efforts to improve methane selectivity while suppressing multi-carbon products, e.g., ethylene, often involve lower alkalinity electrolytes. However, it reduces current density due to increased ohmic resistance without significant gains in the reaction yield. This study utilizes quantum mechanics computations to design a nano-cluster copper catalyst that redirects the reaction pathway from ethylene towards methane, even under alkaline conditions. We achieved a Faradaic efficiency (FE) of 85 %, a current density of 1.5 A/cm(2), and stability of over 10 hours solely by controlling particle size in copper catalysts. This work paves the way to overcoming current limitations in electrocatalytic methane production and holds broader implications for advancing sustainable CO2 utilization in energy systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] CO2 Electroreduction to Methane at Production Rates Exceeding 100 mA/cm2
    Rasouli, Armin Sedighian
    Wang, Xue
    Wicks, Joshua
    Lee, Geonhui
    Peng, Tao
    Li, Fengwang
    McCallum, Christopher
    Dinh, Cao-Thang
    Ip, Alexander H.
    Sinton, David
    Sargent, Edward H.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (39) : 14668 - 14673
  • [2] The Selective Electrochemical Conversion of Preactivated CO2 to Methane
    Luca, Oana R.
    McCrory, Charles C. L.
    Dalleska, Nathan F.
    Koval, Carl A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : H473 - H476
  • [3] Selective Electrochemical Conversion of CO2 into Methane on Ag-Decorated Copper Microsphere
    Dahal, Rabin
    Srivastava, Rohit
    Bastakoti, Bishnu Prasad
    CHEMISTRYOPEN, 2025, 14 (01):
  • [4] CO2 Methane Conversion
    Obryvalin, M. V.
    Subbotin, D. I.
    Popov, S. D.
    Denisov, Y. S.
    Popov, V. E.
    HIGH ENERGY CHEMISTRY, 2024, 58 (06) : 604 - 607
  • [5] Influence of Co Doping on Copper Nanoclusters for CO2 Electroreduction
    Nascimento, Guilherme R.
    Neto, Marionir M. C. B.
    Da Silva, Juarez L. F.
    Galvao, Breno R. L.
    ACS OMEGA, 2024, 9 (47): : 47114 - 47121
  • [6] Photocatalytic CO2 conversion: Beyond the earth
    Low, Jingxiang
    Zhang, Chao
    Karadas, Ferdi
    Xiong, Yujie
    CHINESE JOURNAL OF CATALYSIS, 2023, 50 : 1 - 5
  • [7] Atomically engineered gold-copper nanocatalysts for selective CO2 conversion
    Kauffman, Douglas
    Alfonso, Dominic
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [8] Directing CO2 conversion with copper nanoneedles
    Douglas R. Kauffman
    Dominic Alfonso
    Nature Catalysis, 2018, 1 : 99 - 100
  • [9] Molecular Inhibition for Selective CO2 Conversion
    Creissen, Charles E.
    de la Cruz, Jose Guillermo Rivera
    Karapinar, Dilan
    Taverna, Dario
    Schreiber, Moritz W.
    Fontecave, Marc
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (32)
  • [10] Electrochemical and selective conversion of CO2 to ethylene
    Ogura, K
    ELECTROCHEMISTRY, 2003, 71 (08) : 676 - 680