Machine learning-driven energy management of a hybrid nuclear-wind-solar-desalination plant

被引:0
|
作者
Pombo, Daniel Vázquez [1 ,2 ]
Bindner, Henrik W. [1 ]
Spataru, Sergiu V. [3 ]
Sørensen, Poul E. [1 ]
Rygaard, Martin [4 ]
机构
[1] Wind and Energy Systems, Technical University of Denmark (DTU), Frederikborsvej 399, Roskilde,4000, Denmark
[2] R&D Strategic Development, Vattenfall AB, Evenemangsgatan 13C, Solna,169 56, Sweden
[3] Department of Photonics Engineering, Technical University of Denmark, Frederikborsvej 399, Roskilde,4000, Denmark
[4] Department of Environmental Engineering, Water Technology and Processes, Technical University of Denmark, Lyngby,2800, Denmark
关键词
56;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Stratospheric wind field feature extraction and energy management for hybrid electric solar airship with deep reinforcement learning
    Liu, Yang
    Sun, Kangwen
    Lv, Mingyun
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2024, 71
  • [42] Assessment of Machine Learning Algorithms for Predicting Potential Solar and Wind Energy Locations
    Mhamdi, Hicham
    Kerrou, Omar
    Sarhan, Mourtadha
    Sadoune, Zouhair
    Aggour, Mohammed
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 3, 2024, 1100 : 372 - 380
  • [43] Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy
    Bataineh, Khaled M.
    DESALINATION, 2016, 385 : 39 - 52
  • [44] Direct driven wind energy conversion system based on hybrid excitation synchronous machine
    叶斌英
    阮毅
    杨勇
    赵海花
    汤燕燕
    Advances in Manufacturing, 2011, (06) : 562 - 567
  • [45] Performance enhancement of a hybrid multi effect evaporation/membrane distillation system driven by solar energy for desalination
    Elhenawy, Y.
    Moustafa, G. H.
    Attia, Attia Mahmoud
    Mansi, A. E.
    Majozi, Thokozani
    Bassyouni, M.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [46] Smart buildings: Federated learning-driven secure, transparent and smart energy management system using XAI
    Khan, Muhammad Adnan
    Farooq, Muhammad Sajid
    Saleem, Muhammad
    Shahzad, Tariq
    Ahmad, Munir
    Abbas, Sagheer
    Abu-Mahfouz, Adnan M.
    ENERGY REPORTS, 2025, 13 : 2066 - 2081
  • [47] Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models
    Cabrera, Pedro
    Antonio Carta, Jose
    Gonzalez, Jaime
    Melian, Gustavo
    DESALINATION, 2018, 435 : 77 - 96
  • [48] Enhancing wastewater treatment efficiency through machine learning-driven effluent quality prediction: A plant-level analysis
    Cechinel, Maria Alice Prado
    Neves, Juliana
    Fuck, Joao Vitor Rios
    Andrade, Rodrigo Campos de
    Spogis, Nicolas
    Riella, Humberto Gracher
    Padoin, Natan
    Soares, Cintia
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 58
  • [49] Performance estimation technique for solar-wind hybrid systems: A machine learning approach
    Salazar-Caceres, Fabian
    Ramirez-Murillo, Harrynson
    Torres-Pinzon, Carlos Andres
    Camargo-Martinez, Marthapatricia
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 87 : 175 - 185
  • [50] Advancing building management with nano-enhanced carbon materials: a machine learning-driven business and economic analysis
    Zhu, Yuan
    Mohammed, Khidhair Jasim
    Elsehrawy, Mohamed Gamal
    Ali, H. Elhosiny
    AL Garalleh, Hakim
    CARBON LETTERS, 2024, : 781 - 802