ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection

被引:1
|
作者
Xin, Zhimeng [1 ]
Wu, Tianxu [2 ]
Chen, Shiming [2 ]
Zou, Yixiong [3 ]
Shao, Ling [4 ]
You, Xinge [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
[4] Univ Chinese Acad Sci UCAS, UCAS Terminus AI Lab, Beijing 100101, Peoples R China
关键词
Training; Detectors; Object detection; Feature extraction; Task analysis; Semantics; Adaptation models; Few-shot object detection; extensible attention; co-existing regions; NETWORK;
D O I
10.1109/TIP.2024.3411771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features. However, such existing FSOD approaches seldom consider the localization of objects from local to global. Limited by the scarce training data in FSOD, the training samples of novel classes typically capture part of objects, resulting in such FSOD methods being unable to detect the completely unseen object during testing. To tackle this problem, we propose an Extensible Co-Existing Attention (ECEA) module to enable the model to infer the global object according to the local parts. Specifically, we first devise an extensible attention mechanism that starts with a local region and extends attention to co-existing regions that are similar and adjacent to the given local region. We then implement the extensible attention mechanism in different feature scales to progressively discover the full object in various receptive fields. In the training process, the model learns the extensible ability on the base stage with abundant samples and transfers it to the novel stage of continuous extensible learning, which can assist the few-shot model to quickly adapt in extending local regions to co-existing regions. Extensive experiments on the PASCAL VOC and COCO datasets show that our ECEA module can assist the few-shot detector to completely predict the object despite some regions failing to appear in the training samples and achieve the new state-of-the-art compared with existing FSOD methods. Code is released at https://github.com/zhimengXin/ECEA.
引用
收藏
页码:5564 / 5576
页数:13
相关论文
共 50 条
  • [21] Few-Shot Object Detection with Model Calibration
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 720 - 739
  • [22] A Closer Look at Few-Shot Object Detection
    Liu, Yuhao
    Dong, Le
    He, Tengyang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 430 - 447
  • [23] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [24] Industrial few-shot fractal object detection
    Haoran Huang
    Xiaochuan Luo
    Chen Yang
    Neural Computing and Applications, 2023, 35 : 21055 - 21069
  • [25] Transformation Invariant Few-Shot Object Detection
    Li, Aoxue
    Li, Zhenguo
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3093 - 3101
  • [26] Few-Shot Object Detection with Weight Imprinting
    Dingtian Yan
    Jitao Huang
    Hai Sun
    Fuqiang Ding
    Cognitive Computation, 2023, 15 : 1725 - 1735
  • [27] Few-Shot Object Detection with Foundation Models
    Han, Guangxing
    Lim, Ser-Nam
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 28608 - 28618
  • [28] Few-Shot Object Detection in Unseen Domains
    Guirguis, Karim
    Eskandar, George
    Kayser, Matthias
    Yang, Bin
    Beyerer, Juergen
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 98 - 107
  • [29] Few-Shot Few-Shot Learning and the role of Spatial Attention
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2693 - 2700
  • [30] IMPROVING FEW-SHOT OBJECT DETECTION WITH OBJECT PART PROPOSALS
    Chevalley, Arthur
    Tomoiaga, Ciprian
    Detyniecki, Marcin
    Russwurm, Marc
    Tuia, Devis
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6502 - 6505