Nonagriculturalization Detection Based on Vector Polygons and Contrastive Learning With High-Resolution Remote Sensing Images

被引:0
|
作者
Zhang, Hui [1 ]
Liu, Wei [1 ]
Zhu, Changming [1 ]
Niu, Hao [1 ]
Yin, Pengcheng [2 ]
Dong, Shiling [2 ]
Wu, Jialin [1 ]
Li, Erzhu [1 ]
Zhang, Lianpeng [1 ]
机构
[1] Jiangsu Normal Univ, Sch Geog Geomat & Planning, Xuzhou 221116, Peoples R China
[2] Bur Nat Resources & Planning Xuzhou, Xuzhou 221006, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Vectors; Image segmentation; Feature extraction; Monitoring; Deep learning; Clustering algorithms; Training; Annotations; Change detection; contrastive learning (CL); cropland; remote sensing; vector polygons;
D O I
10.1109/JSTARS.2024.3476131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The conversion of agricultural lands, termed "nonagriculturalization," poses profound threats to food security and ecological stability. Remote sensing image change detection offers an invaluable tool for monitoring this phenomenon. However, most change detection techniques prioritize image comparison over exploiting accumulated vector datasets. Additionally, many current methods are not readily applicable in practical scenarios due to inadequate model generalization capabilities and a scarcity of samples, resulting in a continued reliance on manual intervention for nonagriculturalization detection. In response, this article introduces a novel change detection approach for nonagriculturalization based on the vector data and contrastive learning. Initially, the boundary-constrained simple noniterative clustering algorithm is applied to segment two-phase images under vector data guidance. Samples are then generated using an adaptive cropping method. For early phase image samples, a collaborative validation-based sample annotation framework is employed to optimize and annotate the samples, with the purified high-quality samples serving as the training set for subsequent classification. For later-phase image samples, only those within the cropland vector polygons are retained for prediction. Building on this, a semi-supervised cross-domain contrastive learning framework is proposed for remote sensing scene classification. Ultimately, by integrating nonagriculturalization rules and postprocessing techniques, areas undergoing nonagriculturalization are further detected. Validating our methodology on Wuxi and Yangzhou datasets yielded precision rates of 91.57% and 89.21%, with recall rates of 93.68% and 90.51%, respectively. These outcomes affirm the effectiveness of our method in nonagriculturalization detection, offering robust technical support for research in this domain.
引用
收藏
页码:18474 / 18488
页数:15
相关论文
共 50 条
  • [21] Object Detection with Proposals in High-Resolution Optical Remote Sensing Images
    Ding, Huoping
    Luo, Qinhan
    Zou, Zhengxia
    Guo, Cuicui
    Shi, Zhenwei
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2017, 2017, 10585 : 242 - 250
  • [22] Automatic shadow detection in high-resolution multispectral remote sensing images
    Shi, Lu
    Fang, Jing
    Zhao, Yue-feng
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 105
  • [23] Road Extraction from High Resolution Remote Sensing Images Based on Vector Field Learning
    Liang, Peng
    Shi, Wenzhong
    Ding, Yixing
    Liu, Zhiqiang
    Shang, Haolv
    SENSORS, 2021, 21 (09)
  • [24] Vehicle Detection in High Resolution Satellite Remote Sensing Images Based on Deep Learning
    Tan, Qulin
    Ling, Juan
    Hu, Jun
    Qin, Xiaochun
    Hu, Jiping
    IEEE ACCESS, 2020, 8 : 153394 - 153402
  • [25] Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images
    Pan, Bin
    Tai, Jianhao
    Zheng, Qi
    Zhao, Shanshan
    JOURNAL OF SENSORS, 2017, 2017
  • [26] Building Extraction from High-Resolution Remote-Sensing Images Based on Deep Learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (05): : 281 - 286
  • [27] Building extraction from high-resolution remote-sensing images based on deep learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (05): : 281 - 286
  • [28] Multitask Learning-based Building Extraction from High-Resolution Remote Sensing Images
    Zhu P.
    Li S.
    Zhang L.
    Li Y.
    Journal of Geo-Information Science, 2021, 23 (03) : 514 - 523
  • [29] Extraction of Aquaculture Cages from High-Resolution Remote Sensing Images Based on Deep Learning
    Yuan, Ying
    Li, Fei
    Zhou, Dan
    Bai, Lu
    Jurek-Loughrey, Anna
    Wang, Zhibao
    2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, : 9556 - 9560
  • [30] Automatic Detection of Cloud in High-Resolution Remote Sensing Images Based on Adaptive SLIC and MFC
    Kang Chaomeng
    Liu Jiahang
    Yu Kai
    Lu Zhuanli
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462