Exponential Hardness of Reinforcement Learning with Linear Function Approximation

被引:0
|
作者
Kane, Daniel [1 ]
Liu, Sihan [1 ]
Lovett, Shachar [1 ]
Mahajan, Gaurav [2 ]
Szepesvári, Csaba [3 ,4 ]
Weisz, Gellért [5 ]
机构
[1] University of California, San Diego, United States
[2] Yale University, United States
[3] DeepMind, London, United Kingdom
[4] University of Alberta, Edmonton, Canada
[5] University College London, London, United Kingdom
来源
关键词
Compendex;
D O I
36th Annual Conference on Learning Theory, COLT 2023
中图分类号
学科分类号
摘要
Reinforcement learning
引用
收藏
页码:1588 / 1617
相关论文
共 50 条
  • [31] Reinforcement learning with function approximation for cooperative navigation tasks
    Melo, Francisco S.
    Ribeiro, M. Isabel
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 3321 - +
  • [32] Online Model Selection for Reinforcement Learning with Function Approximation
    Lee, Jonathan N.
    Pacchiano, Aldo
    Muthukumar, Vidya
    Kong, Weihao
    Brunskill, Emma
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [33] Reinforcement Learning With Function Approximation for Traffic Signal Control
    Prashanth, L. A.
    Bhatnagar, Shalabh
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (02) : 412 - 421
  • [34] Function Approximation for Reinforcement Learning Controller for Energy from
    Sarkar, Soumyendu
    Gundecha, Vineet
    Ghorbanpour, Sahand
    Shmakov, Alexander
    Babu, Ashwin Ramesh
    Naug, Avisek
    Pichard, Alexandre
    Cocho, Mathieu
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6201 - 6209
  • [35] Reinforcement learning with function approximation: Survey and practice experience
    Chizhov, Yuriy
    INTERNATIONAL CONFERENCE MODELLING OF BUSINESS, INDUSTRIAL AND TRANSPORT SYSTEMS, 2008, : 204 - 210
  • [36] SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation
    Dai, Bo
    Shaw, Albert
    Li, Lihong
    Xiao, Lin
    He, Niao
    Liu, Zhen
    Chen, Jianshu
    Song, Le
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [37] CBR for state value function approximation in reinforcement learning
    Gabel, T
    Riedmiller, M
    CASE-BASED REASONING RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2005, 3620 : 206 - 221
  • [38] Policy gradient methods for reinforcement learning with function approximation
    Sutton, RS
    McAllester, D
    Singh, S
    Mansour, Y
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 1057 - 1063
  • [39] Multivariate Decision Tree Function Approximation for Reinforcement Learning
    Saghezchi, Hossein Bashashati
    Asadpour, Masoud
    NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 687 - 694
  • [40] Toward General Function Approximation in Nonstationary Reinforcement Learning
    Feng, Songtao
    Yin, Ming
    Huang, Ruiquan
    Wang, Yu-Xiang
    Yang, Jing
    Liang, Yingbin
    IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2024, 5 : 190 - 206