Comprehensive techno-economic and environmental assessment for 2,3-butanediol production from bread waste

被引:0
|
作者
Tiwari, Bikash R. [1 ]
Maity, Sunil K. [2 ]
Brar, Satinder K. [3 ]
Chew, Kit Wayne [4 ]
Kumar, Gopalakrishnan [5 ,8 ]
Kumar, Vinod [6 ,7 ]
机构
[1] Univ Quebec, Inst Natl Rech Sci, Ctr Eau Terre & Environm, Quebec City, PQ, Canada
[2] Indian Inst Technol Hyderabad, Dept Chem Engn, Sangareddy 502284, Telangana, India
[3] York Univ, Lassonde Sch Engn, Dept Civil Engn, Toronto, ON, Canada
[4] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, 62 Nanyang Dr, Nanyang 637459, Singapore
[5] Univ Stavanger, Fac Sci & Technol, Inst Chem Biosci & Environm Engn, Box 8600 Forus, N-4036 Stavanger, Norway
[6] Cranfield Univ, Fac Engn & Appl Sci, Cranfield MK43 0AL, England
[7] Indian Inst Technol Roorkee, Dept Biosci & Bioengn, Roorkee, Uttaranchal, India
[8] Yonsei Univ, Sch Civil & Environm Engn, Seoul 03722, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
Bread waste; 2,3-Butanediol; Global warming; Life cycle assessment; Pinch analysis; Techno-economic analysis;
D O I
10.1016/j.cej.2024.157003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bread waste (BW) is a common food waste in Europe and North America and has enormous potential as a biorefinery substrate for the sustainable synthesis of various platform chemicals. Our previous work made use of BW for the fermentative production of 2,3-butanediol (BDO). The present work evaluated the economic prospects and environmental consequences associated with the overall processes, handling 100 metric tons BW per day. The comprehensive process design using Aspen Plus and integrated techno-economic and environmental assessment was carried out for two different BW hydrolysis scenarios: acid and enzyme hydrolysis, followed by fermentation and extraction-based downstream BDO separation. The optimal heat exchanger network was designed using pinch analysis, which improved the energy efficiency of the processes significantly, with about 10 % savings of BDO production costs. Despite this improvement, the BDO derived from BW was exorbitant (4.2-6.9 $/kg) compared to the market price (3.23 $/kg) due to relatively higher capital investment for the current plant capacity. Further, the process inventory was modelled in SimaPro v9.1.0 to estimate the environmental consequences of these production processes for various impact categories, such as global warming (2.63 - 3.19 kg CO2 eq.), marine eutrophication (3.55 x 10-4 - 4.01 x 10-4 kg N eq.), terrestrial ecotoxicity (6.44 - 7.88 kg 1,4 - DCB), etc. Sensitivity and uncertainty analyses were also conducted to establish the reliability of the results. It was found that the enzyme hydrolysis was associated with lower environmental impacts than acid hydrolysis. This comprehensive study can be used as a guideline for developing sustainable BW-based biorefinery in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Techno-Economic and Environmental Assessment of Municipal Solid Waste Energetic Valorization
    Machin, Einara Blanco
    Pedroso, Daniel Travieso
    Acosta, Daviel Gomez
    Silva dos Santos, Maria Isabel
    de Carvalho, Felipe Solferini
    Machin, Adrian Blanco
    Neira Ortiz, Matias Abner
    Sanchez Arriagada, Reinaldo
    Travieso Fernandez, Daniel Ignacio
    Braga Maciel, Lucia Bollini
    Cuevas Arcos, Daniel
    Guerra Reyes, Yanet
    de Carvalho Junior, Joao Andrade
    ENERGIES, 2022, 15 (23)
  • [42] PRODUCTION AND PROPERTIES OF 2,3-BUTANEDIOL .19. CYCLIC ACETALS AND KETALS DERIVED FROM LEVO-2,3-BUTANEDIOL
    NEISH, AC
    MACDONALD, FJ
    CANADIAN JOURNAL OF RESEARCH SECTION B-CHEMICAL SCIENCES, 1947, 25 (01): : 70 - 79
  • [43] Conversion of food waste to renewable energy: A techno-economic and environmental assessment
    Chen, Yunzhi
    Pinegar, Lizzie
    Immonen, Jake
    Powell, Kody M.
    JOURNAL OF CLEANER PRODUCTION, 2023, 385
  • [44] Environmental, Energy, and Techno-Economic Assessment of Waste-to-Energy Incineration
    Zeng, Jincan
    Mustafa, Ade Brian
    Liu, Minwei
    Huang, Guori
    Shang, Nan
    Liu, Xi
    Wei, Kexin
    Wang, Peng
    Dong, Huijuan
    SUSTAINABILITY, 2024, 16 (10)
  • [45] PRODUCTION AND PROPERTIES OF 2,3-BUTANEDIOL .32. 2,3-BUTANEDIOL FERMENTATIONS AT POISED HYDROGEN ION CONCENTRATIONS
    NEISH, AC
    LEDINGHAM, GA
    CANADIAN JOURNAL OF RESEARCH SECTION B-CHEMICAL SCIENCES, 1949, 27 (08): : 694 - +
  • [46] Techno-economic assessment of hydrogen production from seawater
    Dokhani, Sepanta
    Assadi, Mohsen
    Pollet, Bruno G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (26) : 9592 - 9608
  • [47] Industrial Production of 2,3-Butanediol from the Engineered Corynebacterium glutamicum
    Jeongmo Yang
    Borim Kim
    Hyunsu Kim
    Yuhyeon Kweon
    Soojin Lee
    Jinwon Lee
    Applied Biochemistry and Biotechnology, 2015, 176 : 2303 - 2313
  • [48] Biotechnological production of 2,3-butanediol from agroindustrial food wastes
    Canepa, P
    Cauglia, F
    Gilio, A
    Perego, P
    CHEMICAL AND BIOCHEMICAL ENGINEERING QUARTERLY, 2000, 14 (02) : 53 - 56
  • [49] MICROBIAL-PRODUCTION OF 2,3-BUTANEDIOL FROM WHEY PERMEATE
    LEE, HK
    MADDOX, IS
    BIOTECHNOLOGY LETTERS, 1984, 6 (12) : 815 - 818
  • [50] Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
    Kim, Soo-Jung
    Seo, Seung-Oh
    Park, Yong-Cheol
    Jin, Yong-Su
    Seo, Jin-Ho
    JOURNAL OF BIOTECHNOLOGY, 2014, 192 : 376 - 382