Trustworthy Machine Learning Approaches for Cyberattack Detection: A Review

被引:0
|
作者
Guembe, Blessing [1 ,3 ]
Azeta, Ambrose [2 ,3 ]
Misra, Sanjay [2 ,3 ]
Ahuja, Ravin [3 ,4 ]
机构
[1] Department of Computer and Information Sciences, Covenant University, Ogun, Ota, Nigeria
[2] Department of Computer Science, Namibia University of Science and Technology, Windhoek, Namibia
[3] Department of Computer Science and Communication, Ostfold University College, Halden, Norway
[4] Delhi Skills and Entrepreneurship University, Delhi, India
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Database systems - Decision trees - Diagnosis - Digital libraries - Face recognition - Learning algorithms - Machine learning - Philosophical aspects - Semantics - Transparency
引用
收藏
页码:265 / 278
相关论文
共 50 条
  • [41] Deep Reinforcement Learning Approach for Cyberattack Detection
    Tareq, Imad
    Elbagoury, Bassant Mohamed
    El-Regaily, Salsabil Amin
    El-Horbaty, El-Sayed M.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (05) : 15 - 30
  • [42] A Review of Speech-centric Trustworthy Machine Learning: Privacy, Safety, and Fairness
    Feng, Tiantian
    Hebbar, Rajat
    Mehlman, Nicholas
    Shi, Xuan
    Kommineni, Aditya
    Narayanan, Shrikanth
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2023, 12 (03)
  • [43] Poisoning Attacks Against Machine Learning: Can Machine Learning Be Trustworthy?
    Oprea, Alina
    Singhal, Anoop
    Vassilev, Apostol
    COMPUTER, 2022, 55 (11) : 94 - 99
  • [44] An Intelligent Secured Framework for Cyberattack Detection in Electric Vehicles' CAN Bus Using Machine Learning
    Avatefipour, Omid
    Al-Sumaiti, Ameena Saad
    El-Sherbeeny, Ahmed M.
    Awwad, Emad Mahrous
    Elmeligy, Mohammed A.
    Mohamed, Mohamed A.
    Malik, Hafiz
    IEEE ACCESS, 2019, 7 : 127580 - 127592
  • [45] A Review of Machine Learning Approaches in Synchrophasor Technology
    Lal, M. Dhinu
    Varadarajan, Ramesh
    IEEE ACCESS, 2023, 11 : 33520 - 33541
  • [46] A review of machine learning approaches to Spam filtering
    Guzella, Thiago S.
    Caminhas, Walmir M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (07) : 10206 - 10222
  • [47] A Review of NILM Applications with Machine Learning Approaches
    Silva, Maheesha Dhashantha
    Liu, Qi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2971 - 2989
  • [48] Review of multimodal machine learning approaches in healthcare
    Krones, Felix
    Marikkar, Umar
    Parsons, Guy
    Szmul, Adam
    Mahdi, Adam
    INFORMATION FUSION, 2025, 114
  • [49] Machine learning to combat cyberattack: a survey of datasets and challenges
    Prasad, Arvind
    Chandra, Shalini
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2023, 20 (04): : 577 - 588
  • [50] A Covert Electricity-Theft Cyberattack Against Machine Learning-Based Detection Models
    Cui, Lei
    Guo, Lei
    Gao, Longxiang
    Cai, Borui
    Qu, Youyang
    Zhou, Yipeng
    Yu, Shui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) : 7824 - 7833