Towards Practical Backdoor Attacks on Federated Learning Systems

被引:1
|
作者
Shi, Chenghui [1 ]
Ji, Shouling [1 ]
Pan, Xudong [2 ]
Zhang, Xuhong [1 ]
Zhang, Mi [2 ]
Yang, Min [2 ]
Zhou, Jun [3 ]
Yin, Jianwei [1 ]
Wang, Ting [4 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Fudan Univ, Sch Comp Sci & Technol, Shanghai 200433, Peoples R China
[3] Ant Grp, Hangzhou 310000, Peoples R China
[4] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
关键词
Neurons; Computational modeling; Training; Task analysis; Data models; Servers; Face recognition; Federated learning; backdoor attack; deep neural networks;
D O I
10.1109/TDSC.2024.3376790
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) is nowadays one of the most promising paradigms for privacy-preserving distributed learning. Without revealing its local private data to outsiders, a client in FL systems collaborates to build a global Deep Neural Network (DNN) by submitting its local model parameter update to a central server for iterative aggregation. With secure multi-party computation protocols, the submitted update of any client is also by design invisible to the server. Seemingly, this standard design is a win-win for client privacy and service provider utility. Ironically, any attacker may also use manipulated or impersonated client to submit almost any attack payloads under the umbrella of the FL protocol itself. In this work, we craft a practical backdoor attack on FL systems that is proved to be simultaneously effective and stealthy on diverse use cases of FL systems and leading commercial FL platforms in the real world. Basically, we first identify a small number of redundant neurons which tend to be rarely or slightly updated in the model, and then inject backdoor into these redundant neurons instead of the whole model. In this way, our backdoor attack can achieve a high attack success rate with a minor impact on the accuracy of the original task. As countermeasures, we further consider several common technical choices including robust aggregation mechanisms, differential privacy mechanism,s and network pruning. However, none of the defenses show desirable defense capability against our backdoor attack. Our results strongly highlight the vulnerability of existing FL systems against backdoor attacks and the urgent need to develop more effective defense mechanisms.
引用
收藏
页码:5431 / 5447
页数:17
相关论文
共 50 条
  • [31] FedMC: Federated Learning with Mode Connectivity Against Distributed Backdoor Attacks
    Wang, Weiqi
    Zhang, Chenhan
    Liu, Shushu
    Tang, Mingjian
    Liu, An
    Yu, Shui
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4873 - 4878
  • [32] Defending against Poisoning Backdoor Attacks on Federated Meta-learning
    Chen, Chien-Lun
    Babakniya, Sara
    Paolieri, Marco
    Golubchik, Leana
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (05)
  • [33] SCFL: Mitigating backdoor attacks in federated learning based on SVD and clustering 
    Wang, Yongkang
    Zhai, Di-Hua
    Xia, Yuanqing
    COMPUTERS & SECURITY, 2023, 133
  • [34] An adaptive robust defending algorithm against backdoor attacks in federated learning
    Wang, Yongkang
    Zhai, Di-Hua
    He, Yongping
    Xia, Yuanqing
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 118 - 131
  • [35] A3FL: Adversarially Adaptive Backdoor Attacks to Federated Learning
    Zhang, Hangfan
    Jia, Jinyuan
    Chen, Jinghui
    Lin, Lu
    Wu, Dinghao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36, NEURIPS 2023, 2023,
  • [36] FederatedReverse: A Detection and Defense Method Against Backdoor Attacks in Federated Learning
    Zhao, Chen
    Wen, Yu
    Li, Shuailou
    Liu, Fucheng
    Meng, Dan
    PROCEEDINGS OF THE 2021 ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, IH&MMSEC 2021, 2021, : 51 - 62
  • [37] Never Too Late: Tracing and Mitigating Backdoor Attacks in Federated Learning
    Zeng, Hui
    Zhou, Tongqing
    Wu, Xinyi
    Cai, Zhiping
    2022 41ST INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS 2022), 2022, : 69 - 81
  • [38] Resisting Backdoor Attacks in Federated Learning via Bidirectional Elections and Individual Perspective
    Qin, Zhen
    Chen, Feiyi
    Zhi, Chen
    Yan, Xueqiang
    Deng, Shuiguang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14677 - 14685
  • [39] Coordinated Backdoor Attacks against Federated Learning with Model-Dependent Triggers
    Gong, Xueluan
    Chen, Yanjiao
    Huang, Huayang
    Liao, Yuqing
    Wang, Shuai
    Wang, Qian
    IEEE NETWORK, 2022, 36 (01): : 84 - 90
  • [40] FedGame: A Game-Theoretic Defense against Backdoor Attacks in Federated Learning
    Jia, Jinyuan
    Yuan, Zhuowen
    Sahabandu, Dinuka
    Niu, Luyao
    Rajabi, Arezoo
    Ramasubramanian, Bhaskar
    Li, Bo
    Poovendran, Radha
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,