The Restoring Force Triangle: A Mnemonic Device for Polymer Mechanochemistry

被引:1
|
作者
Sun, Yunyan [1 ,2 ]
Xie, Fangbai [1 ,2 ]
Moore, Jeffrey S. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
TRANSITION-STATE; MECHANOPHORES; REACTIVITY; STRENGTH; ENERGY; MECHANOCHROMISM; ACTIVATION; PATHWAYS; DYNAMICS; ADHESION;
D O I
10.1021/jacs.4c10346
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In polymer mechanochemistry, mechanophores are specific molecular units within the macromolecular backbone that are particularly sensitive to tension. To facilitate understanding of this selective responsiveness, we introduce the restoring force triangle (RFT). The RFT is a mnemonic device intended to provide intuitive insight into how external tensile forces (i.e., stretching) can selectively activate scissile bonds, thereby initiating mechanically driven chemical reactions. The RFT utilizes two easily computable parameters: the effective bond stiffness constant, which measures a bond's resistance to elongation, and the bond dissociation energy, which is the energy required to break a bond. These parameters help categorize reactivity into thermal and mechanical domains, providing a useful framework for developing new mechanophores that are responsive to force but thermally stable. The RFT helps chemists intuitively understand how tensile force contributes to the activation of a putative mechanophore, facilitating the development of mechanochemical reactions and mechano-responsive materials.
引用
收藏
页码:31702 / 31714
页数:13
相关论文
共 50 条
  • [41] Reversible mechanochemistry of a PdII coordination polymer
    Paulusse, JMJ
    Sijbesma, RP
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (34) : 4460 - 4462
  • [42] POLYMER MECHANOCHEMISTRY Flex, release and repeat
    Sottos, Nancy R.
    NATURE CHEMISTRY, 2014, 6 (05) : 381 - 383
  • [43] Leveraging mechanochemistry for sustainable polymer degradation
    Simay Aydonat
    Adrian H. Hergesell
    Claire L. Seitzinger
    Regina Lennarz
    George Chang
    Carsten Sievers
    Jan Meisner
    Ina Vollmer
    Robert Göstl
    Polymer Journal, 2024, 56 : 249 - 268
  • [44] Polymer mechanochemistry for the release of small cargoes
    Shen, Hang
    Cao, Yunzheng
    Lv, Miaojiang
    Sheng, Qinxin
    Zhang, Zhengbiao
    CHEMICAL COMMUNICATIONS, 2022, 58 (31) : 4813 - 4824
  • [45] Learning Brainstem Anatomy: A Mnemonic Device
    McDeavitt, James T.
    King, Kara C.
    McDeavitt, Kathleen R.
    PM&R, 2014, 6 (10) : 963 - 966
  • [46] Investigations in Fundamental and Applied Polymer Mechanochemistry
    Larsen, Michael B.
    Boydston, Andrew J.
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2016, 217 (03) : 354 - 364
  • [47] The Challenges and Opportunities of Contemporary Polymer Mechanochemistry
    Boulatov, Roman
    CHEMPHYSCHEM, 2017, 18 (11) : 1419 - 1421
  • [48] Sonopharmacology: Polymer mechanochemistry for drug activation
    Shi, Zhiyuan
    Li, Helin
    Li, Xin
    MATERIALS TODAY, 2023, 64 : 1 - 3
  • [49] Leveraging mechanochemistry for sustainable polymer degradation
    Aydonat, Simay
    Hergesell, Adrian H.
    Seitzinger, Claire L.
    Lennarz, Regina
    Chang, George
    Sievers, Carsten
    Meisner, Jan
    Vollmer, Ina
    Goestl, Robert
    POLYMER JOURNAL, 2024, 56 (04) : 249 - 268
  • [50] Mechanochemistry of Topological Complex Polymer Systems
    Zhang, Huan
    Lin, Yangju
    Xu, Yuanze
    Weng, Wengui
    POLYMER MECHANOCHEMISTRY, 2015, 369 : 135 - 207