Granular Ball Fuzzy Neighborhood Rough Sets-Based Feature Selection via Multiobjective Mayfly Optimization

被引:2
|
作者
Sun, Lin [1 ]
Liang, Hanbo [2 ]
Ding, Weiping [3 ]
Xu, Jiucheng [2 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Artificial Intelligence, Tianjin 300457, Peoples R China
[2] Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Peoples R China
[3] Nantong Univ, Sch Artificial Intelligence & Comp Sci, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Optimization; Rough sets; Entropy; Noise measurement; Noise; Uncertainty; Feature selection; fuzzy neighborhood; granular ball; high-dimensional data classification; mayfly optimization; GENETIC ALGORITHM;
D O I
10.1109/TFUZZ.2024.3440575
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most feature selection models via swarm intelligence optimization have difficulty achieving an optimal global subset of features and are not ideal for classifying high-dimensional data. We study a granular ball fuzzy neighborhood rough sets-based feature selection approach via multiobjective mayfly optimization on high-dimensional datasets. First, to enhance the ability to search for samples in granular balls, the granular ball radius is defined by the standard deviation coefficient. To measure sparse samples with noise in the granular ball, a new fuzzy neighborhood is constructed inside the granular ball, and upper and lower approximations are presented to develop the granular ball fuzzy neighborhood sets model. Second, to estimate the uncertainty of features in granular balls, fuzzy neighborhood entropy is provided. In the process of searching for features in fuzzy neighborhood decision systems, a feature-partitioning strategy based on the average fuzzy neighborhood entropy is studied. A subset of the preselected features is subsequently formed in the first stage. Third, to enhance the diversity in nondominated solutions, the feature vector is decoded into the mayfly, which is optimized through the mesh model. The mayfly ranking strategy updates the mayfly velocity and position to avoid local optima. Thus, in the second stage, the improved multiobjective mayfly optimization strategy can be utilized in selecting the optimal subset of features. Finally, a feature selection scheme is proposed for high-dimensional data with noise. Experimental findings prove that the developed methodology is viable and has excellent classification efficiency on 12 high-dimensional datasets.
引用
收藏
页码:6112 / 6124
页数:13
相关论文
共 50 条
  • [31] Feature selection based on rough sets and particle swarm optimization
    Wang, Xiangyang
    Yang, Jie
    Teng, Xiaolong
    Xia, Weijun
    Jensen, Richard
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 459 - 471
  • [32] Feature selection for multi-label classification based on neighborhood rough sets
    Duan, Jie
    Hu, Qinghua
    Zhang, Lingjun
    Qian, Yuhua
    Li, Deyu
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (01): : 56 - 65
  • [33] Fuzzy rough sets and fuzzy rough neural networks for feature selection: A review
    Ji, Wanting
    Pang, Yan
    Jia, Xiaoyun
    Wang, Zhongwei
    Hou, Feng
    Song, Baoyan
    Liu, Mingzhe
    Wang, Ruili
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (03)
  • [34] Robust Feature Selection Based on Fuzzy Rough Sets with Representative Sample
    Zhang, Zhimin
    Chen, Weitong
    Liu, Chengyu
    Kang, Yun
    Liu, Feng
    Li, Yuwen
    Wei, Shoushui
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2019, 2019, 11888 : 151 - 165
  • [35] Extended rough sets model based on fuzzy granular ball and its attribute reduction
    Ji, Xia
    Peng, JianHua
    Zhao, Peng
    Yao, Sheng
    INFORMATION SCIENCES, 2023, 640
  • [36] Neighborhood rough sets with distance metric learning for feature selection
    Yang, Xiaoling
    Chen, Hongmei
    Li, Tianrui
    Wan, Jihong
    Sang, Binbin
    KNOWLEDGE-BASED SYSTEMS, 2021, 224
  • [37] Parallel Approaches to Neighborhood Rough Sets: Classification and Feature Selection
    Zhang, Junbo
    Wang, Chizheng
    Pan, Yi
    Li, Tianrui
    KNOWLEDGE ENGINEERING AND MANAGEMENT , ISKE 2013, 2014, 278 : 1 - 10
  • [38] A neighborhood rough sets-based ensemble method, with application to software fault prediction
    Jiang, Feng
    Hu, Qiang
    Yang, Zhiyong
    Liu, Jinhuan
    Du, Junwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [39] On fuzzy-rough sets approach to feature selection
    Bhatt, RB
    Gopal, M
    PATTERN RECOGNITION LETTERS, 2005, 26 (07) : 965 - 975
  • [40] FUZZY ROUGH SETS - APPLICATION TO FEATURE-SELECTION
    KUNCHEVA, LI
    FUZZY SETS AND SYSTEMS, 1992, 51 (02) : 147 - 153