Granular Ball Fuzzy Neighborhood Rough Sets-Based Feature Selection via Multiobjective Mayfly Optimization

被引:2
|
作者
Sun, Lin [1 ]
Liang, Hanbo [2 ]
Ding, Weiping [3 ]
Xu, Jiucheng [2 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Artificial Intelligence, Tianjin 300457, Peoples R China
[2] Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Peoples R China
[3] Nantong Univ, Sch Artificial Intelligence & Comp Sci, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Optimization; Rough sets; Entropy; Noise measurement; Noise; Uncertainty; Feature selection; fuzzy neighborhood; granular ball; high-dimensional data classification; mayfly optimization; GENETIC ALGORITHM;
D O I
10.1109/TFUZZ.2024.3440575
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most feature selection models via swarm intelligence optimization have difficulty achieving an optimal global subset of features and are not ideal for classifying high-dimensional data. We study a granular ball fuzzy neighborhood rough sets-based feature selection approach via multiobjective mayfly optimization on high-dimensional datasets. First, to enhance the ability to search for samples in granular balls, the granular ball radius is defined by the standard deviation coefficient. To measure sparse samples with noise in the granular ball, a new fuzzy neighborhood is constructed inside the granular ball, and upper and lower approximations are presented to develop the granular ball fuzzy neighborhood sets model. Second, to estimate the uncertainty of features in granular balls, fuzzy neighborhood entropy is provided. In the process of searching for features in fuzzy neighborhood decision systems, a feature-partitioning strategy based on the average fuzzy neighborhood entropy is studied. A subset of the preselected features is subsequently formed in the first stage. Third, to enhance the diversity in nondominated solutions, the feature vector is decoded into the mayfly, which is optimized through the mesh model. The mayfly ranking strategy updates the mayfly velocity and position to avoid local optima. Thus, in the second stage, the improved multiobjective mayfly optimization strategy can be utilized in selecting the optimal subset of features. Finally, a feature selection scheme is proposed for high-dimensional data with noise. Experimental findings prove that the developed methodology is viable and has excellent classification efficiency on 12 high-dimensional datasets.
引用
收藏
页码:6112 / 6124
页数:13
相关论文
共 50 条
  • [1] Online group streaming feature selection based on fuzzy neighborhood granular ball rough sets
    Sun, Yuanhao
    Zhu, Ping
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [2] Fuzzy Rough Sets-Based Incremental Feature Selection for Hierarchical Classification
    Huang, Wanli
    She, Yanhong
    He, Xiaoli
    Ding, Weiping
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (10) : 3721 - 3733
  • [3] Feature subset selection based on fuzzy neighborhood rough sets
    Wang, Changzhong
    Shao, Mingwen
    He, Qiang
    Qian, Yuhua
    Qi, Yali
    KNOWLEDGE-BASED SYSTEMS, 2016, 111 : 173 - 179
  • [4] Kernelized Fuzzy Rough Sets-Based Three-Way Feature Selection
    Liu, Xingchen
    Wang, Liuxin
    Pan, Linchao
    Gao, Can
    ROUGH SETS, IJCRS 2022, 2022, 13633 : 376 - 389
  • [5] Granular ball-based fuzzy multineighborhood rough set for feature selection via label enhancement
    Sun, Lin
    Du, Wenjuan
    Ding, Weiping
    Long, Qian
    Xu, Jiucheng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [6] Multi-label feature selection based on fuzzy neighborhood rough sets
    Jiucheng Xu
    Kaili Shen
    Lin Sun
    Complex & Intelligent Systems, 2022, 8 : 2105 - 2129
  • [7] Feature selection for label distribution learning based on neighborhood fuzzy rough sets
    Deng, Zhixuan
    Li, Tianrui
    Zhang, Pengfei
    Liu, Keyu
    Yuan, Zhong
    Deng, Dayong
    APPLIED SOFT COMPUTING, 2025, 169
  • [8] Multi-label feature selection based on fuzzy neighborhood rough sets
    Xu, Jiucheng
    Shen, Kaili
    Sun, Lin
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (03) : 2105 - 2129
  • [9] Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Sets
    Sun, Lin
    Wang, Lanying
    Ding, Weiping
    Qian, Yuhua
    Xu, Jiucheng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (01) : 19 - 33
  • [10] Fuzzy rough sets, and a granular neural network for unsupervised feature selection
    Ganivada, Avatharam
    Ray, Shubhra Sankar
    Pal, Sankar K.
    NEURAL NETWORKS, 2013, 48 : 91 - 108