Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage

被引:0
|
作者
Szatkowska, Martyna [1 ]
Pielichowska, Kinga [1 ]
机构
[1] AGH Univ Krakow, Fac Mat Sci & Ceram, Dept Biomat & Composites, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
shape stable phase change materials (SSPCM); dulcitol; sugar alcohol; long-term thermal energy storage; SUGAR ALCOHOLS; DEGREES-C; TEMPERATURES; PERFORMANCE; COMPOSITE; MIXTURES; BLENDS; SEM; PCM;
D O I
10.3390/polym16223229
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In recent years, there has been an increasing interest in phase change materials (PCM) based on dulcitol and other sugar alcohols. These materials have almost twice as large latent heat of fusion as other organic materials. Sugar alcohols are relatively cheap, and they can undergo cold crystallization, which is crucial for long-term thermal energy storage. The disadvantage of dulcitol and other sugar alcohols is the solid-liquid phase transition. As a result, the state of matter of the material and its volume change, and in the case of materials modified with microparticles or nanoparticles, sedimentation of additives in liquid PCM can occur. In this study, we obtained shape-stable phase change materials (SSPCM) by co-gelation of starch and dulcitol. To characterize the samples obtained, differential scanning calorimetry (DSC), step-mode DSC, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used, and they were also used to test for shape stabilization. The results show that the obtained systems have great potential as shape-stabilized phase change materials. The sample dulcitol/starch with a 50:50 ratio exhibited the highest heat of cold crystallization, up to 52.90 J/g, while the heat of melting was 126.16 J/g under typical DSC measuring conditions. However, depending on the applied heating program, the heat of cold crystallization can even reach 125 J/g. The thermal stability of all compositions was higher than the phase change temperature, with only 1% mass loss occurring at temperatures above 200 degrees C, while the phase change occurred at a maximum of 190 degrees C.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage
    Zhang, Yuzhong
    Zheng, Shuilin
    Zhu, Shuquan
    Ma, Jianning
    Sun, Zhiming
    Farid, Mohammed
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 361 - 370
  • [42] Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance
    Feng, Daili
    Feng, Yanhui
    Li, Pei
    Zang, Yuyang
    Wang, Chen
    Zhang, Xinxin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 292
  • [43] Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management
    Zhu, Jianhui
    An, Qing
    Guo, Qijing
    Yi, Hao
    Xia, Ling
    Song, Shaoxian
    APPLIED CLAY SCIENCE, 2022, 223
  • [44] Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage
    Zhang, Ying
    Zhang, Jiasheng
    Li, Xiangqi
    Wu, Xiao
    JOURNAL OF ENERGY STORAGE, 2019, 21 : 611 - 617
  • [45] Preparation and performance study of porous biochar-based shape-stabilized phase change materials for thermal energy storage
    Zhang, Yan
    Yan, Jiajuan
    Xie, Haiwei
    Luo, Jianyun
    BIOMASS CONVERSION AND BIOREFINERY, 2024, : 11065 - 11081
  • [46] Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials
    Sun, Zhiming
    Kong, Weian
    Zheng, Shuilin
    Frost, Ray L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 117 : 400 - 407
  • [47] Bio-based sunflower carbon/polyethylene glycol shape-stabilized phase change materials for thermal energy storage
    Gao, Ning
    Du, Jiaoli
    Yang, Wenbo
    Sun, Bocun
    Li, Juncheng
    Xia, Tian
    Li, Youbing
    Yang, Chaolong
    Liu, Xiaolin
    RSC ADVANCES, 2024, 14 (33) : 24141 - 24151
  • [48] Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage
    Li, Jianwen
    Zuo, Xiaochao
    Zhao, Xiaoguang
    Li, Daokui
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2019, 183
  • [49] Paraffin/graphene sponge composite as a shape-stabilized phase change material for thermal energy storage
    Li Pengyang
    Chen Qiang
    Peng Qingyu
    He Xiaodong
    PIGMENT & RESIN TECHNOLOGY, 2021, 50 (05) : 412 - 418
  • [50] Thermal energy storage performance of hierarchical porous kaolinite geopolymer based shape-stabilized composite phase change materials
    Zhang, Haomin
    Gao, Huan
    Bernardo, Enrico
    Lei, Shengjun
    Wang, Ling
    CERAMICS INTERNATIONAL, 2023, 49 (18) : 29808 - 29819