Foreground separation knowledge distillation for object detection

被引:0
|
作者
Li, Chao [1 ]
Liu, Rugui [1 ]
Quan, Zhe [1 ]
Hu, Pengpeng [2 ]
Sun, Jun [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Jiangsu, Peoples R China
[2] Coventry Univ, Ctr Computat Sci & Math Modelling, Coventry, England
基金
中国国家自然科学基金;
关键词
Knowledge distillation; Object detection; Foreground separation; Channel feature;
D O I
10.7717/peerj-cs.2485
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning models have become predominant methods for computer vision tasks, but the large computation and storage requirements of many models make them challenging to deploy on devices with limited resources. Knowledge distillation (KD) is a widely used approach for model compression. However, when applied in the object detection problems, the existing KD methods either directly applies the feature map or simply separate the foreground from the background by using a binary mask, aligning the attention between the teacher and the student models. Unfortunately, these methods either completely overlook or fail to thoroughly eliminate noise, resulting in unsatisfactory model accuracy for student models. To address this issue, we propose a foreground separation distillation (FSD) method in this paper. The FSD method enables student models to distinguish between foreground and background using Gaussian heatmaps, reducing irrelevant information in the learning process. Additionally, FSD also extracts the channel feature by converting the spatial feature maps into probabilistic forms to fully utilize the knowledge in each channel of a well-trained teacher. Experimental results demonstrate that the YOLOX detector enhanced with our distillation method achieved superior performance on both the fall detection and the VOC2007 datasets. For example, YOLOX with FSD achieved 73.1% mean average precision (mAP) on the Fall Detection dataset, which is 1.6% higher than the baseline. The code of FSD is accessible via https://doi.org/10.5281/zenodo.13829676.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Revisiting knowledge distillation for light-weight visual object detection
    Gao, Tianze
    Gao, Yunfeng
    Li, Yu
    Qin, Peiyuan
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2021, 43 (13) : 2888 - 2898
  • [32] GAN-Knowledge Distillation for One-Stage Object Detection
    Wang, Wanwei
    Hong, Wei
    Wang, Feng
    Yu, Jinke
    IEEE ACCESS, 2020, 8 : 60719 - 60727
  • [33] Knowledge Distillation in Object Detection for Resource-Constrained Edge Computing
    Setyanto, Arief
    Sasongko, Theopilus Bayu
    Fikri, Muhammad Ainul
    Ariatmanto, Dhani
    Agastya, I. Made Artha
    Rachmanto, Rakandhiya Daanii
    Ardana, Affan
    Kim, In Kee
    IEEE ACCESS, 2025, 13 : 18200 - 18214
  • [34] Towards Efficient 3D Object Detection with Knowledge Distillation
    Yang, Jihan
    Shi, Shaoshuai
    Ding, Runyu
    Wang, Zhe
    Qi, Xiaojuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [35] Multidomain Object Detection Framework Using Feature Domain Knowledge Distillation
    Jaw, Da-Wei
    Huang, Shih-Chia
    Lu, Zhi-Hui
    Fung, Benjamin C. M.
    Kuo, Sy-Yen
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (08) : 4643 - 4651
  • [36] KNOWLEDGE DISTILLATION FOR OBJECT DETECTION: FROM GENERIC TO REMOTE SENSING DATASETS
    Hoang-An Le
    Minh-Tan Pham
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6194 - 6197
  • [37] Scalability of knowledge distillation in incremental deep learning for fast object detection
    Yuwono, Elizabeth Irenne
    Tjondonegoro, Dian
    Sorwar, Golam
    Alaei, Alireza
    APPLIED SOFT COMPUTING, 2022, 129
  • [38] Active Object Detection with Knowledge Aggregation and Distillation from Large Models
    Yang, Dejie
    Liu, Yang
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 16624 - 16633
  • [39] A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection
    Lucia Maddalena
    Alfredo Petrosino
    Neural Computing and Applications, 2010, 19 : 179 - 186
  • [40] A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection
    Maddalena, Lucia
    Petrosino, Alfredo
    NEURAL COMPUTING & APPLICATIONS, 2010, 19 (02): : 179 - 186