Understanding Online Purchases with Explainable Machine Learning

被引:0
|
作者
Bastos, Joao A. [1 ,2 ]
Bernardes, Maria Ines [1 ,2 ]
机构
[1] Univ Lisbon, Lisbon Sch Econ & Management ISEG, P-1649004 Lisbon, Portugal
[2] Univ Lisbon, REM, P-1649004 Lisbon, Portugal
关键词
customer profiling; conversion; direct marketing; explainable artificial intelligence; SHAP value; accumulated local effects; BEHAVIOR;
D O I
10.3390/info15100587
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Customer profiling in e-commerce is a powerful tool that enables organizations to create personalized offers through direct marketing. One crucial objective of customer profiling is to predict whether a website visitor will make a purchase, thereby generating revenue. Machine learning models are the most accurate means to achieve this objective. However, the opaque nature of these models may deter companies from adopting them. Instead, they may prefer simpler models that allow for a clear understanding of the customer attributes that contribute to a purchase. In this study, we show that companies need not compromise on prediction accuracy to understand their online customers. By leveraging website data from a multinational communications service provider, we establish that the most pertinent customer attributes can be readily extracted from a black box model. Specifically, we show that the features that measure customer activity within the e-commerce platform are the most reliable predictors of conversions. Moreover, we uncover significant nonlinear relationships between customer features and the likelihood of conversion.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Explainable machine learning for phishing feature detection
    Calzarossa, Maria Carla
    Giudici, Paolo
    Zieni, Rasha
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (01) : 362 - 373
  • [42] Evaluating Explainable Machine Learning Models for Clinicians
    Scarpato, Noemi
    Nourbakhsh, Aria
    Ferroni, Patrizia
    Riondino, Silvia
    Roselli, Mario
    Fallucchi, Francesca
    Barbanti, Piero
    Guadagni, Fiorella
    Zanzotto, Fabio Massimo
    COGNITIVE COMPUTATION, 2024, 16 (04) : 1436 - 1446
  • [43] Explainable machine learning for hydrocarbon prospect risking
    Mustafa, Ahmad
    Koster, Klaas
    AlRegib, Ghassan
    GEOPHYSICS, 2024, 89 (01) : WA13 - WA24
  • [44] Explainable Machine Learning in the Research of Materials Science
    Wang, Guanjie
    Liu, Shengxian
    Zhou, Jian
    Sun, Zhimei
    ACTA METALLURGICA SINICA, 2024, 60 (10) : 1345 - 1361
  • [45] Explainable Machine Learning in Credit Risk Management
    Bussmann, Niklas
    Giudici, Paolo
    Marinelli, Dimitri
    Papenbrock, Jochen
    COMPUTATIONAL ECONOMICS, 2021, 57 (01) : 203 - 216
  • [46] Predicting Software Defects with Explainable Machine Learning
    Santos, Geanderson
    Figueiredo, Eduardo
    Veloso, Adriano
    Viggiato, Markos
    Ziviani, Nivio
    PROCEEDINGS OF THE 19TH BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY, SBOS 2020, 2020,
  • [47] Review of explainable machine learning for anaerobic digestion
    Gupta, Rohit
    Zhang, Le
    Hou, Jiayi
    Zhang, Zhikai
    Liu, Hongtao
    You, Siming
    Ok, Yong Sik
    Li, Wangliang
    BIORESOURCE TECHNOLOGY, 2023, 369
  • [48] Explainable machine learning for motor fault diagnosis
    Wang, Yuming
    Wang, Peng
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [49] Loan default predictability with explainable machine learning
    Li, Huan
    Wu, Weixing
    FINANCE RESEARCH LETTERS, 2024, 60
  • [50] Explainable and interpretable machine learning and data mining
    Atzmueller, Martin
    Fuernkranz, Johannes
    Kliegr, Tomas
    Schmid, Ute
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (05) : 2571 - 2595