Ambient Synthesis of Vanadium-Based Prussian Blue Analogues Nanocubes for High-Performance and Durable Aqueous Zinc-Ion Batteries with Eutectic Electrolytes

被引:18
|
作者
Shi, Yuxin [1 ]
Yang, Biao [1 ,2 ]
Song, Gongjing [1 ]
Chen, Zhidong [2 ]
Shakouri, Mohsen [3 ]
Zhou, Wenfeng [1 ]
Zhang, Xiaoxing [1 ]
Yuan, Guoqiang [1 ]
Pang, Huan [1 ]
机构
[1] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Chem & Chem Engn, Changzhou 213164, Jiangsu, Peoples R China
[3] Univ Saskatchewan, Canadian Light Source Inc, Saskatoon, SK S7N 2V3, Canada
基金
中国国家自然科学基金;
关键词
Ultra-long cycling stability; Eutectic electrolyte; Water-in-salt electrolyte; In situ growth; and Conversion strategy;
D O I
10.1002/anie.202411579
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Prussian blue analogues (PBAs) have been widely studied in aqueous zinc-ion batteries (AZIBs) due to the characteristics of large specific surface area, open aperture, and straightforward synthesis. In this work, vanadium-based PBA nanocubes were firstly prepared using a mild in situ conversion strategy at room temperature without the protection of noble gas. Benefiting from the multiple-redox active sites of V3+/V4+, V4+/V5+, and Fe2+/Fe3+, the cathode exhibited an excellent discharge specific capacity of 200 mAh g-1 in AZIBs, which is much higher than those of other metal-based PBAs nanocubes. To further improve the long-term cycling stability of the V-PBA cathode, a high concentration water-in-salt electrolyte (4.5 M ZnSO4+3 M Zn(OTf)2), and a water-based eutectic electrolyte (5.55 M glucose+3 M Zn(OTf)2) were designed to successfully inhibit the dissolution of vanadium and improve the deposition of Zn2+ onto the zinc anode. More importantly, the assembled AZIBs maintained 55 % of their highest discharge specific capacity even after 10000 cycles at 10 A g-1 with superior rate capability. This study provides a new strategy for the preparation of pure PBA nanostructures and a new direction for enhancing the long-term cycling stability of PBA-based AZIBs at high current densities for industrialization prospects.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Gou, Lin
    Zhao, Wentao
    Li, Huan
    Liu, Xingjiang
    Xu, Qiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (01) : 113 - 123
  • [22] Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries
    Li, Yan
    Zhang, Daohong
    Huang, Shaozhuan
    Yang, Hui Ying
    NANO ENERGY, 2021, 85
  • [23] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [24] Tailoring vanadium oxide crystal orientation for high-performance aqueous zinc-ion batteries
    Li, Rong
    Yuan, Yifei
    Yang, Linyu
    Wang, Jun
    Wang, Shuying
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    DALTON TRANSACTIONS, 2024, 53 (09) : 4108 - 4118
  • [25] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Jiayu Bai
    Songjie Hu
    Lirong Feng
    Xinhui Jin
    Dong Wang
    Kai Zhang
    Xiaohui Guo
    Chinese Chemical Letters, 2024, 35 (09) : 517 - 521
  • [26] Advances on Defect Engineering of Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries
    Guo, Cong
    Yi, Shanjun
    Si, Rui
    Xi, Baojuan
    An, Xuguang
    Liu, Jie
    Li, Jingfa
    Xiong, Shenglin
    ADVANCED ENERGY MATERIALS, 2022, 12 (40)
  • [27] Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges
    Chen, Xiudong
    Zhang, Hang
    Liu, Jin-Hang
    Gao, Yun
    Cao, Xiaohua
    Zhan, Changchao
    Wang, Yawei
    Wang, Shitao
    Chou, Shu-Lei
    Dou, Shi-Xue
    Cao, Dapeng
    ENERGY STORAGE MATERIALS, 2022, 50 : 21 - 46
  • [28] Ultrafast synthesis of vanadium-based oxides with crystalline-amorphous heterostructure for advanced aqueous zinc-ion batteries
    Yan, Duan
    Li, Hanbo
    Yang, Aomen
    Wang, Menglian
    Nie, Kaiqi
    Lv, Xiaoxin
    Deng, Jiujun
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [29] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [30] Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries
    Luo, Zexiang
    Zeng, Jing
    Liu, Zhen
    He, Hanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906