Short-term forecasting for ship fuel consumption based on deep learning

被引:0
|
作者
Chen, Yumei [1 ]
Sun, Baozhi [1 ]
Xie, Xianwei [1 ]
Li, Xiaohe [2 ,3 ]
Li, Yanjun [1 ]
Zhao, Yuhao [1 ]
机构
[1] College of Power and Energy Engineering, Harbin Engineering University, Harbin,150001, China
[2] China Ship Scientific Research Center, Wuxi,214082, China
[3] Taihu Laboratory of Deepsea Technological Science, Wuxi,214082, China
关键词
Condition based maintenance - Diesel engines - Energy efficiency - Energy utilization - Forecasting - Long short-term memory - Marine engines - Ships;
D O I
暂无
中图分类号
学科分类号
摘要
Improving ship energy efficiency and intelligent optimization depend heavily on predictive maintenance of Marine diesel engine performance. For successful Condition-Based Maintenance, a multi-step fuel consumption prediction of ships that is accurate and stable is needed. However, existing methods mainly focus on current time or future single-step forecasts. Therefore, it is essential to investigate the optimum prediction model across various prediction time steps from the perspective of model accuracy and model generalization capability. Based on the 14-month sensor data of bulk carriers, high-quality ship energy consumption data is obtained using the local weighting method to establish a short-term multi-step prediction model of engine fuel consumption based on deep learning. Five real fuel consumption sample sets with different equilibrium levels were determined to evaluate the robustness and generalization of varying prediction models. According to the research, the ensemble empirical mode decomposition-based memory network (EEMD-LSTM) can maintain good stationarity and high accuracy in long-term trend prediction within 30 to 60 steps. In contrast, the bidirectional memory network (BiLSTM) has high accuracy in short-term volatility prediction within 30 steps. An efficient method for ship prediction maintenance and defect diagnosis can be found in a high-precision multi-step forecast method for Marine diesel engine fuel consumption. © 2024
引用
收藏
相关论文
共 50 条
  • [31] Ensemble deep learning method for short-term load forecasting
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 86 - 90
  • [32] Short-term solar irradiance forecasting in streaming with deep learning
    Lara-Benitez, Pedro
    Carranza-Garcia, Manuel
    Luna-Romera, Jose Maria
    Riquelme, Jose C.
    NEUROCOMPUTING, 2023, 546
  • [33] Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid With Clustering and Consumption Pattern Recognition
    Syed, Dabeeruddin
    Abu-Rub, Haitham
    Ghrayeb, Ali
    Refaat, Shady S.
    Houchati, Mahdi
    Bouhali, Othmane
    Banales, Santiago
    IEEE ACCESS, 2021, 9 : 54992 - 55008
  • [34] Application of long short-term memory (LSTM) neural network based on deep learning for electricity energy consumption forecasting
    Bilgili, Mehmet
    Arslan, Niyazi
    Sekertekin, Aliihsan
    Yasar, Abdulkadir
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (01) : 140 - 157
  • [35] Short-Term Energy Consumption Forecasting at the Edge: A Federated Learning Approach
    Savi, Marco
    Olivadese, Fabrizio
    IEEE ACCESS, 2021, 9 : 95949 - 95969
  • [36] Short-Term Load Forecasting Method Based on Deep Reinforcement Learning for Smart Grid
    Guo, Wei
    Zhang, Kai
    Wei, Xinjie
    Liu, Mei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [37] Deep Learning-Based Short-Term Load Forecasting for Transformers in Distribution Grid
    Wang, Renshu
    Zhao, Jing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1 - 10
  • [38] An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM
    Tang, Lingling
    Yi, Yulin
    Peng, Yuexing
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [39] Short-Term Traffic Forecasting using LSTM-based Deep Learning Models
    Haputhanthri, Dilantha
    Wijayasiri, Adeesha
    MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON 2021) / 7TH INTERNATIONAL MULTIDISCIPLINARY ENGINEERING RESEARCH CONFERENCE, 2021, : 602 - 607
  • [40] Short-Term Load Forecasting Based on Deep Learning Bidirectional LSTM Neural Network
    Cai, Changchun
    Tao, Yuan
    Zhu, Tianqi
    Deng, Zhixiang
    APPLIED SCIENCES-BASEL, 2021, 11 (17):