Improved TLBO algorithm for optimal energy management in a hybrid microgrid with support vector machine-based forecasting of uncertain parameters

被引:4
|
作者
Krishna, Raji [1 ]
Hemamalini, S. [1 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Chennai, Tamil Nadu, India
关键词
Forecasting; Distributed generators; Optimal energy management; Hybrid AC-DC micro grid; Clean energy; Meta-heuristic techniques;
D O I
10.1016/j.rineng.2024.102992
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The worldwide need for electrical energy is increasing, and integrating renewable energy sources (RES) into the power grid will enhance the efficient use of clean energy to fulfill the growing demand for energy. However, the uncertain nature of power from the RES like solar and wind, utility price, and load demand, necessitates accurate forecasting of the uncertain parameters (UP) to improve the reliability of the hybrid microgrid. In this work, optimal energy management (EM) of a hybrid AC-DC microgrid (HMG) is proposed which comprises of two phases, forecasting and scheduling. In the former phase, the uncertainties like day-ahead utility price, electrical demand, and power from the RES are forecasted using the support vector machine (SVM) algorithm and the results are compared with the artificial neural network (ANN) algorithm. In the second phase, the improved Teaching and Learning-Based Optimization (ITLBO) algorithm isused to reduce the generation costs over a 24-h period in a hybrid microgrid. The forecasted uncertain parameters are used as input in the second phase. Power trading occurs between the utility grid and the hybrid microgrid based on load demand and bidding costs, aiming to minimize generation costs. The proposed framework's viability and performance are assessed using IEEE standard test systems. The generating cost, as well as the optimal power dispatch of the HMG, is obtained using the ITLBO algorithm, and the results are compared with different meta-heuristic techniques such as the teaching and learning-based algorithm (TLBO), Ant Lion Optimization algorithm (ALO) and the artificial bee colony algorithm (ABC). The results obtained demonstrate the superiority of the SVM algorithm in forecasting and the ITLBO algorithm over other methods in minimizing operating costs.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A Maximum Class Distance Support Vector Machine-Based Algorithm for Recursive Dimension Reduction
    Sun, Zheng
    Zhang, Xiaoguang
    Ruan, Dianxu
    Xu, Guiyun
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 2, PROCEEDINGS, 2009, 5552 : 251 - 258
  • [32] A Binary Particle Swarm Optimization and Support Vector Machine-based algorithm for object detection
    Pan H.
    Li X.-B.
    Jin L.-Z.
    Xia L.-Z.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2011, 33 (01): : 117 - 121
  • [33] A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting
    Chen, Yanhua
    Yang, Yi
    Liu, Chaoqun
    Li, Caihong
    Li, Lian
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (09) : 2617 - 2632
  • [34] Evaluation of a Support Vector Machine-Based Single-Doppler Wind Retrieval Algorithm
    Li, Nan
    Wei, Ming
    Yu, Yongjiang
    Zhang, Wengang
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2017, 34 (08) : 1749 - 1762
  • [35] Short Term Traffic Forecasting Based on Hybrid of Firefly Algorithm and Least Squares Support Vector Machine
    Yusof, Yuhanis
    Ahmad, Farzana Kabir
    Kamaruddin, Siti Sakira
    Omar, Mohd Hasbullah
    Mohamed, Athraa Jasim
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2015, 2015, 545 : 164 - 173
  • [36] Support Vector Machine based on clustering algorithm for interruptible load forecasting
    Yu, Xiang
    Bu, Guangfeng
    Peng, Bingyue
    Zhang, Chen
    Yang, Xiaolan
    Wu, Jun
    Ruan, Wenqing
    Yu, Yu
    Tang, Liangcai
    Zou, Ziqing
    2019 THE 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, CONTROL AND ROBOTICS (EECR 2019), 2019, 533
  • [37] Research on stock price forecasting algorithm based on support vector machine
    Wang, Zhanmin
    2015 3RD INTERNATIONAL CONFERENCE ON SOFT COMPUTING IN INFORMATION COMMUNICATION TECHNOLOGY (SCICT 2015), 2015, : 112 - 116
  • [38] Housing price forecasting based on genetic algorithm and support vector machine
    Gu Jirong
    Zhu Mingcang
    Jiang Liuguangyan
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3383 - 3386
  • [39] Optimizing parameters of support vector machine based on gradient algorithm
    School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 610054, China
    Kongzhi yu Juece/Control and Decision, 2008, 23 (11): : 1291 - 1295
  • [40] A Hybrid Least Square Support Vector Machine Model with Parameters Optimization for Stock Forecasting
    Chai, Jian
    Du, Jiangze
    Lai, Kin Keung
    Lee, Yan Pui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015