Microstructure control in additively manufactured Ti-6Al-4V during high-power laser powder bed fusion

被引:0
|
作者
Dhiman, Sahil [1 ,2 ]
Chinthapenta, Viswanath [2 ]
Brandt, Milan [3 ]
Fabijanic, Daniel [4 ]
Xu, Wei [1 ]
机构
[1] Deakin Univ, Sch Engn, Waurn Ponds, Vic 3216, Australia
[2] Indian Inst Technol Hyderabad, Dept Mech & Aerosp Engn, Micromech Lab, NH-65, Kandi 502285, Telangana, India
[3] RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, VIC 3000, Australia
[4] Deakin Univ, Inst Frontier Mat, Waurn Ponds, Vic 3216, Australia
关键词
Additive manufacturing; Laser powder bed fusion; Ti-6Al-4V; Microstructure; Dimensional accuracy; BETA GRAIN-BOUNDARIES; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MARTENSITE DECOMPOSITION; PROCESSING PARAMETERS; PHASE-TRANSFORMATION; FRACTURE-TOUGHNESS; VARIANT SELECTION; HP-SLM; ALLOY;
D O I
10.1016/j.addma.2024.104573
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) is a premier additive manufacturing (AM) process capable of making intricate metallic parts with short lead time, but its widespread industrial acceptance is still limited due to its low build rate in producing high-quality near net-shape parts. Herein, we have demonstrated the capability of employing high laser power LPBF for the manufacture of quality Ti-6Al-4V at a much-increased build rate, combined with decent dimensional accuracy, suitable microstructure, and superior mechanical performance. Compared to LPBF under low laser power (<= 400 W), high laser power (600 W) LPBF offers a much narrower processing window to reach a balance among dimensional accuracy, materials density, and desired microstructure. For a given high laser power, a combination of low scanning speed, small hatch spacing, and small focal offset distance imparts a thermal environment with reduced cooling rates to facilitate the formation of lamellar alpha+(3 or globular alpha microstructures at a much lower critical energy density than that under low power. The findings in this work advance our understanding of optimizing the LPBF process in the high-power regime towards sustainable and efficient manufacturing of quality Ti-6Al-4V components having superior mechanical performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] The Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V Powder
    Memu, Firat
    Durlu, Nuri
    Yagmur, Aydin
    JOM, 2025,
  • [12] Process variation in Laser Powder Bed Fusion of Ti-6Al-4V
    Chen, Zhuoer
    Wu, Xinhua
    Davies, Chris H. J.
    ADDITIVE MANUFACTURING, 2021, 41
  • [13] Fracture of laser powder bed fusion additively manufactured Ti-6Al-4V under multiaxial loading: Calibration and comparison of fracture models
    Wilson-Heid, Alexander E.
    Beese, Allison M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 761
  • [14] Precipitation hardening of laser powder bed fusion Ti-6Al-4V
    Derimow, Nicholas
    Benzing, Jake T.
    Garcia, Jacob
    Levin, Zachary S.
    Lu, Ping
    Moser, Newell
    Beamer, Chad
    Delrio, Frank W.
    Hrabe, Nik
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 921
  • [15] Thermal Conductivity of Ti-6Al-4V in Laser Powder Bed Fusion
    Bartsch, Katharina
    Bossen, Bastian
    Chaudhary, Waqar
    Landry, Michael
    Herzog, Dirk
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8
  • [16] Geometry Effect on Microstructure and Mechanical Properties in Laser Powder Bed Fusion of Ti-6Al-4V
    Munk, Juri
    Breitbarth, Eric
    Siemer, Tobias
    Pirch, Norbert
    Haefner, Constantin
    METALS, 2022, 12 (03)
  • [17] Microstructural evolution during post heat treatment of the Ti-6Al-4V alloy manufactured by laser powder bed fusion
    Lakroune, Yassine
    Connetable, Damien
    Hugues, Jonathan
    Hermantier, Paul
    Barriobero-Vila, Pere
    Dehmas, Moukrane
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 1980 - 1994
  • [18] Numerical Modeling of Distortion of Ti-6Al-4V Components Manufactured Using Laser Powder Bed Fusion
    Ninpetch, Patiparn
    Kowitwarangkul, Pruet
    Chalermkarnnon, Prasert
    Promoppatum, Patcharapit
    Chuchuay, Piyapat
    Rattanadecho, Phadungsak
    METALS, 2022, 12 (09)
  • [19] The Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V PowderThe Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V PowderMemu, Durlu, and Yagmur
    Firat Memu
    Nuri Durlu
    Aydin Yagmur
    JOM, 2025, 77 (5) : 3906 - 3917
  • [20] Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusion
    Liu, Jiangwei
    Li, Guichuan
    Sun, Qidong
    Li, Hu
    Sun, Jie
    Wang, Xiebin
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 299