Uncertain Knowledge Graph Embedding Using Auxiliary Information

被引:0
|
作者
Bahaj, Adil [1 ]
Ghogho, Mounir [1 ,2 ]
机构
[1] Int Univ Rabat, TICLab, Rabat 11103, Morocco
[2] Univ Leeds, Fac Engn, Leeds LS2 9JT, England
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Semantics; Knowledge graphs; Task analysis; Uncertainty; Training; Computational modeling; Adaptation models; Predictive models; Uncertain knowledge graphs; knowledge graph embedding; box embedding; confidence prediction;
D O I
10.1109/ACCESS.2024.3439610
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertain knowledge graphs (UKGs) offer a more realistic representation of knowledge by capturing the uncertainty associated with facts. However, existing UKG embedding methods primarily rely on structural information for confidence score prediction, neglecting other sources of uncertainty. This paper investigates the effectiveness of incorporating auxiliary information into UKG embeddings. We propose two approaches: Text-BEUrRE, which leverages textual information, and UCompGCN, which utilizes topological information. Our extensive experiments demonstrate that both methods successfully integrate these auxiliary data sources. Notably, Text-BEUrRE and UCompGCN outperform state-of-the-art baselines on most metrics in the confidence prediction task. On the CN15K dataset, Text-BEUrRE achieves a 7.39% improvement in Mean Squared Error (MSE) compared to the best existing model, while UCompGCN achieves an 8.27% improvement in Mean Absolute Error (MAE).
引用
收藏
页码:138351 / 138361
页数:11
相关论文
共 50 条
  • [41] Research on Bipartite Network Embedding with Auxiliary Information
    Ahmed, Hasnat
    Ali, Shahbaz
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 298 - 303
  • [42] TGformer: A Graph Transformer Framework for Knowledge Graph Embedding
    Shi, Fobo
    Li, Duantengchuan
    Wang, Xiaoguang
    Li, Bing
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 526 - 541
  • [43] Graph Embedding Based Recommendation Techniques on the Knowledge Graph
    Grad-Gyenge, Laszlo
    Kiss, Attila
    Filzmoser, Peter
    ADJUNCT PUBLICATION OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), 2017, : 354 - 359
  • [44] Knowledge graph embedding in a uniform space
    Tong, Da
    Chen, Shudong
    Ma, Rong
    Qi, Donglin
    Yu, Yong
    INTELLIGENT DATA ANALYSIS, 2024, 28 (01) : 33 - 55
  • [45] Enhance Knowledge Graph Embedding by Mixup
    Xie, Tianyang
    Ge, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 569 - 580
  • [46] Exploring the Generalization of Knowledge Graph Embedding
    Zhang, Liang
    Gao, Huan
    Zheng, Xianda
    Qi, Guilin
    Liu, Jiming
    SEMANTIC TECHNOLOGY, JIST 2019: PROCEEDINGS, 2020, 12032 : 162 - 176
  • [47] Knowledge graph embedding with adaptive sampling
    Ouyang D.-T.
    Ma C.
    Lei J.-P.
    Feng S.-S.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2020, 50 (02): : 685 - 691
  • [48] Distribution Knowledge Embedding for Graph Pooling
    Chen, Kaixuan
    Song, Jie
    Liu, Shunyu
    Yu, Na
    Feng, Zunlei
    Han, Gengshi
    Song, Mingli
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7898 - 7908
  • [49] Knowledge Graph Embedding by Normalizing Flows
    Xiao, Changyi
    He, Xiangnan
    Cao, Yixin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4756 - 4764
  • [50] On Training Knowledge Graph Embedding Models
    Mohamed, Sameh K.
    Munoz, Emir
    Novacek, Vit
    INFORMATION, 2021, 12 (04)