Limits of Noisy Quantum Metrology with Restricted Quantum Controls

被引:0
|
作者
Zhou, Sisi [1 ,2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
关键词
SPIN; SENSITIVITY; DISTANCE; STATES;
D O I
10.1103/PhysRevLett.133.170801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Heisenberg limit [(HL), with estimation error scales as 1/n] and the standard quantum limit (SQL, proportional to 1/ffiffi p n ) are two fundamental limits in estimating an unknown parameter in n copies of quantum channels and are achievable with full quantum controls, e.g., quantum error correction (QEC). It is unknown though, whether these limits are still achievable in restricted quantum devices when QEC is unavailable, e.g., with only unitary controls or bounded system sizes. In this Letter, we discover various new limits for estimating qubit channels under restrictive controls. The HL is shown to be unachievable in various cases, indicating the necessity of QEC in achieving the HL. Furthermore, a necessary and sufficient condition to achieve the SQL is determined, where a single-qubit unitary control protocol is identified to achieve the SQL for certain types of noisy channels, and for other cases a constant floor on the estimation error is proven. A practical example of the unitary protocol is provided.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Alternative measures of uncertainty in quantum metrology: Contradictions and limits
    Luis, Alfredo
    Rodil, Alfonso
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [32] Ultimate limits to quantum metrology and the meaning of the Heisenberg limit
    Zwierz, Marcin
    Perez-Delgado, Carlos A.
    Kok, Pieter
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [33] Quantum work capacitances: Ultimate limits for energy extraction on noisy quantum batteries
    Tirone, Salvatore
    Salvia, Raffaele
    Chessa, Stefano
    Giovannetti, Vittorio
    SCIPOST PHYSICS, 2024, 17 (02):
  • [34] Floquet Engineering to Overcome No-Go Theorem of Noisy Quantum Metrology
    Bai, Si-Yuan
    An, Jun-Hong
    PHYSICAL REVIEW LETTERS, 2023, 131 (05)
  • [35] Improving Quantum Metrology via Purifying and Distilling Noisy Probe States
    Zhao, Jun-Long
    Kong, Fan-Zhen
    Chu, Wen-Jing
    Yang, Ming
    Cao, Zhuo-Liang
    ANNALEN DER PHYSIK, 2019, 531 (09)
  • [36] Variational limits for phase precision in linear quantum optical metrology
    Gao, Yang
    Wang, Ru-min
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [37] Quantum metrology
    Giovannetti, V
    Lloyd, S
    Maccone, L
    PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [38] Quantum metrology
    项国勇
    郭光灿
    Chinese Physics B, 2013, 22 (11) : 95 - 104
  • [39] Quantum metrology
    Xiang Guo-Yong
    Guo Guang-Can
    CHINESE PHYSICS B, 2013, 22 (11)
  • [40] Steering-enhanced quantum metrology using superpositions of noisy phase shifts
    Lee, Kuan-Yi
    Lin, Jhen-Dong
    Miranowicz, Adam
    Nori, Franco
    Ku, Huan-Yu
    Chen, Yueh-Nan
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):