Limits of Noisy Quantum Metrology with Restricted Quantum Controls

被引:0
|
作者
Zhou, Sisi [1 ,2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
关键词
SPIN; SENSITIVITY; DISTANCE; STATES;
D O I
10.1103/PhysRevLett.133.170801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Heisenberg limit [(HL), with estimation error scales as 1/n] and the standard quantum limit (SQL, proportional to 1/ffiffi p n ) are two fundamental limits in estimating an unknown parameter in n copies of quantum channels and are achievable with full quantum controls, e.g., quantum error correction (QEC). It is unknown though, whether these limits are still achievable in restricted quantum devices when QEC is unavailable, e.g., with only unitary controls or bounded system sizes. In this Letter, we discover various new limits for estimating qubit channels under restrictive controls. The HL is shown to be unachievable in various cases, indicating the necessity of QEC in achieving the HL. Furthermore, a necessary and sufficient condition to achieve the SQL is determined, where a single-qubit unitary control protocol is identified to achieve the SQL for certain types of noisy channels, and for other cases a constant floor on the estimation error is proven. A practical example of the unitary protocol is provided.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum Metrology for Noisy Systems
    B. M. Escher
    R. L. de Matos Filho
    L. Davidovich
    Brazilian Journal of Physics, 2011, 41 : 229 - 247
  • [2] Quantum Metrology for Noisy Systems
    Escher, B. M.
    de Matos Filho, R. L.
    Davidovich, L.
    BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (4-6) : 229 - 247
  • [3] Quantum limits on postselected, probabilistic quantum metrology
    Combes, Joshua
    Ferrie, Christopher
    Jiang, Zhang
    Caves, Carlton M.
    PHYSICAL REVIEW A, 2014, 89 (05):
  • [4] Practical quantum metrology in noisy environments
    Nichols, Rosanna
    Bromley, Thomas R.
    Correa, Luis A.
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [5] QUANTUM METROLOGY Beauty and the noisy beast
    Maccone, Lorenzo
    Giovannetti, Vittorio
    NATURE PHYSICS, 2011, 7 (05) : 376 - 377
  • [6] Quantum Metrology of Noisy Spreading Channels
    Gorecki, Wojciech
    Riccardi, Alberto
    Maccone, Lorenzo
    PHYSICAL REVIEW LETTERS, 2022, 129 (24)
  • [7] Investigating quantum metrology in noisy channels
    Falaye, B. J.
    Adepoju, A. G.
    Aliyu, A. S.
    Melchor, M. M.
    Liman, M. S.
    Oluwadare, O. J.
    Gonzalez-Ramirez, M. D.
    Oyewumi, K. J.
    SCIENTIFIC REPORTS, 2017, 7
  • [8] Investigating quantum metrology in noisy channels
    B. J. Falaye
    A. G. Adepoju
    A. S. Aliyu
    M. M. Melchor
    M. S. Liman
    O. J. Oluwadare
    M. D. González-Ramírez
    K. J. Oyewumi
    Scientific Reports, 7
  • [9] Quantum Metrology in the Noisy Intermediate-Scale Quantum Era
    Jiao, Lin
    Wu, Wei
    Bai, Si-Yuan
    An, Jun-Hong
    ADVANCED QUANTUM TECHNOLOGIES, 2023,
  • [10] Variational Principle for Optimal Quantum Controls in Quantum Metrology
    Yang, Jing
    Pang, Shengshi
    Chen, Zekai
    Jordan, Andrew N.
    del Campo, Adolfo
    PHYSICAL REVIEW LETTERS, 2022, 128 (16)