Improved YOLOv7 Target Detection Method for Small Urban UAVs

被引:0
|
作者
Yongqiang, Cui [1 ]
Jiaxuan, Li [1 ]
Linguo, Hou [1 ]
Tao, Mei [1 ]
Di, Bai [1 ]
Shaoping, Chen [1 ]
机构
[1] College of Electronics and Information Engineering, South-Central Minzu University, Wuhan,430074, China
关键词
D O I
10.3778/j.issn.1002-8331.2308-0196
中图分类号
学科分类号
摘要
Countermeasures againstlow and small movingUAVs have become an important tool for low altitude airspace security defense, but real-time detection and accurate identification are the prerequisite and key foundation for effective countermeasures. Aiming at the urban low-altitude environment, the target detection algorithm has low accuracy in detecting small-scale UAV targets in different backgrounds, is prone to omission and misdetection, and is susceptible to interference from external factors, etc., alow and small movingUAV target detection method based on the improved YOLOv7 is proposed. Firstly, a large number of UAV samples from different environments and backgrounds are collected to build a data set and are pre-processed by ViBe (visual background extractor) algorithm. Secondly, the coordinate attention mechanism and SPDConv (space-to-depth convolution) module are introduced to improve and optimize the network structure of YOLOv7. Finally, a secondary detection architecture is proposed to fuse ViBe and improved YOLOv7, and the improved YOLOv7 is used as the network model to detect the images processed by ViBe. Based on the position size relationship between the original image and the processed image, the detected target coordinates are mapped back to the original image, so as to complete the target detection and extraction. The experimental results show that the detection accuracy of the proposed target detection method reaches 96.5%, which is 15.8 percentage points higher than that of the original YOLOv7 method, significantly improving the detection accuracy oflow and small movingtargets and meeting the demand for real-time accurate detection of low-altitude UAVs. © 2024 Journal of Computer Engineering and Applications Beijing Co., Ltd.; Science Press. All rights reserved.
引用
收藏
页码:237 / 245
相关论文
共 50 条
  • [41] A Photovoltaic Panel Defect Detection Method Based on the Improved Yolov7
    Liu, Hongzhi
    Zhang, Fenghe
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 359 - 362
  • [42] Target detection and counting method for Acetes chinensis fishing vessels operation based on improved YOLOv7
    Sun Y.
    Chen J.
    Zhang S.
    Wang S.
    Xiong Y.
    Fan W.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (10): : 151 - 162
  • [43] Improved Apple Fruit Target Recognition Method Based on YOLOv7 Model
    Yang, Huawei
    Liu, Yinzeng
    Wang, Shaowei
    Qu, Huixing
    Li, Ning
    Wu, Jie
    Yan, Yinfa
    Zhang, Hongjian
    Wang, Jinxing
    Qiu, Jianfeng
    AGRICULTURE-BASEL, 2023, 13 (07):
  • [44] A New Lunar Dome Detection Method Based on Improved YOLOv7
    Tian, Yunxiang
    Tian, Xiaolin
    SENSORS, 2023, 23 (19)
  • [45] Optimized YOLOv7 for Small Target Detection in Aerial Images Captured by Drone
    Liu Y.
    Chen S.
    Luo L.
    Intl. J. Adv. Comput. Sci. Appl., 2023, 9 (70-79): : 70 - 79
  • [46] Optimized YOLOv7 for Small Target Detection in Aerial Images Captured by Drone
    Liu, Yanxin
    Chen, Shuai
    Luo, Lin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 70 - 79
  • [47] Improved YOLOv7 Small Object Detection Algorithm for Seaside Aerial Images
    Yu, Miao
    Jia, YinShan
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 483 - 491
  • [48] Defect detection of small object solder joints based on improved YOLOv7
    Liu, Zhaolong
    Cao, Wei
    Gao, Junwei
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10)
  • [49] A Small Object Detection Algorithm for Traffic Signs Based on Improved YOLOv7
    Li, Songjiang
    Wang, Shilong
    Wang, Peng
    SENSORS, 2023, 23 (16)
  • [50] CCG-YOLOv7: A Wood Defect Detection Model for Small Targets Using Improved YOLOv7
    Cui, Wenqi
    Li, Zhenye
    Duanmu, Anning
    Xue, Sheng
    Guo, Yiren
    Ni, Chao
    Zhu, Tingting
    Zhang, Yajun
    IEEE ACCESS, 2024, 12 : 10575 - 10585